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Chapter 1. Introduction

When reading programs in today’s popular programming languages, I often find myself wondering if all
this code is really needed. Is is still so combersome to tell the computer what to do? Do we have to code
thousands of lines just to explain the system how to get some data from there, transform it a little bit, and
present it to user in a nice way? You may answer that modern development environments take a lot of
this burden of the programmer by generating the code (MDA being the culmination of this idea), but
doesn’t this mean that we could express the instructions in a better way to begin with?

These thoughts spurred my interest in programming languages. It looks like there are plenty of ideas
which could help to improve the way we talk to a computer. But most of this knowledge stays within the
academic circles where these languages have been developed. If you want to learn multiple programming
languages, you have to read a lot of books, since most of them focus on a single language. For popular
languages such as Java and C#, you can actually buy dozens if not hundreds of books covering the
different aspects of these languages.

This book tries to explain a number of programming languages, covering a wide range from currently
popular ones such as Java, Perl, Python, and C# to less known languages such as ML, Haskell. There is
one key requirement: the language has to be available for free (or otherwise I could not afford writing
this book). We don’t expect a full blown IDE; a good set of command line tools is just as fine.
Fortunately, this requirement is fulfilled by most languages these days, since they don’t stand a chance
otherwise. In many cases, even a free IDE is available (e.g., Eclipse for Java or Smalltalk/X).

When describing the languages, I want to find out what they have in common, and what distinguished
them from each over. The presentation shows my own programming language background: I started with
Pascal and Modula 2 before switching to C/C++ and finally moving to Java web development. In parallel
to C++, I started using Python for scripting and some small applications. If you have a similar
background, you will probably find it very easy to follow the text. Otherwise, you might want to read
some of the references in parallel.

As a programmer, I find small examples more instructive than lengthy explanations. As as result, you
find many small code examples -- there may be more code than explaining text in this book -- each
covering a small piece of the language. Most of the languages in this book offer an interactive
environment where you can enter expressions and directly see the results. This way you can type the
examples, compare the outcome, and experiment yourself.

Another choice I had to make was the kind of development environment for each language. All of them
provide a set of command line tools, and most of them also offer an integrated development environment
which nice features such as syntax highlighting, code/class browser, debugger, and so forth. I decided to
stick to the command line (or a general purpose text editor such as Emacs), because it is a lot more
efficient (in terms of time an space) to paste code examples into the text than to deal with a multitude of
screenshots.
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Chapter 1. Introduction

The book focuses on the languages themselves rather than their libraries, history, or different versions.
For the curious, I will add a few notes about the origin of the language, but mostly refer to other
resources for more detailed information.

After trying multiple ways to organize the chapters I decided to order the languages more or less
chronologically using the year when a language first appeared "in public". However, I do not guarantee
correctness, since this year is sometimes not easy to determine.

As a result of the chronological order, you will find completely different programming paradigms right
next to each other. The 1970s, for example, saw the parallel rise of object-oriented (Smalltalk), logical
(Prolog), functional (Scheme), data-driven (SQL) languages.

There are many ways to read this book. I believe that it is short enough to be read cover to cover, let’s
say, one language per subway trip. Just reading the quick tours is probably enough to make intelligent
remarks to your collegues ("If we were coding it in XXX, we could do it in two lines"). Most chapters
can be read independently of each other. Even for languages that have a lot in common (in particular
Lisp/Scheme and SML/Ocaml), it turned out to be easier to start from scratch than to describe one in
terms of the other. The main exception is the C family which is best understood as a progression from C
to C++ (and Objective C) to Java to C#.

1.1. Acknowledgements

Being an amateur for most of the languages covered in this book, I rely on the help of others to correct
the most blatant mistakes. Fortunately, many of my collegues at AMS and Vodafone read individual
chapters and provided me with valuable feedback. Our Perl master Alexander Brueck helped to get the
Perl chapter in shape. Carten Bucker reviewed to Smalltalk chapter (neither of us is a Smalltalk expert,
but hopefully two one-eyed can get around the worst pitfalls). Volker Garske carefully reviewed the C
chapter.
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Chapter 2. Fortran

Fortran is the oldest high level languages. It was developed at IBM between 1954 and 1957 by a team
lead by John Backus (well known for the Backus normal form, BNF, for syntax definitions). As its name
(FORmula TRANslator) indicates, the language is designed for numerical computations. The first ANS
standard was defined in 1966 (Fortran66), a major update came out in 1977 (Fortran77), and the latest
official standard is Fortran90.

This chapter is based on Fortran77 which is probably the version with the largest code base to date. In
some place, I will hint at some of the improvements contained in the Fortran90 standard.

2.1. Software and Installation

I am using GNU’s Fortran compilerf77 on a Linux system for the examples. To test a program, callf77

followed by the name of the source file and run the resulting executablea.out (as usual you can also
store the executable in another file using the-o option).

2.2. Quick Tour

2.2.1. Hello World

If the "Hello World" program tests the simplicity of a programming language, Fortran scores quite high
in this contest. In general, Fortran’s syntax keeps programs relatively short. In our first example, just the
asterisk as the first argument of the print statement is not immediately clear from the context (it is a
wildcard for the print format).

PROGRAM HELLO
PRINT *, ’Hello World’
END

Apart from string literals, Fortran is case insensitive, and identifiers are normally written with uppercase
characters. In Fortran77, only the first 6 characters of an identifier are significant (Fortran90: 31
characters).

Of course, we are back to punch cards again. The program text is devided into lines of 72 characters
(everything beyond the 72nd character is ignored). If a line starts with an asterisk or aC it is considered a
comment.

C This is the Hello World program.
PRINT *, ’Hello World’
END

3



Chapter 2. Fortran

Otherwise, the first five columns are reserved for statement labels and the sixth column for the
continuation markers. The actual statements start in the seventh column.

If a statement spans multiple lines, the continuation lines are marked by some character in the sixth
column (often a$ sign, but any character is fine).

Statement labels are integer values used targets for jumps and loops. Fortunately, we hardly need
statement labels anymore when using the latest version of Fortran. The following example echos the
user’s input (must be numbers) in an infinite loop.

100 READ *, X
PRINT *, ’X=’, X
GO TO 100
END

After this short excursion into the formatting of the program text, let’s get back to the language itself.
Aimed at numerical computations, Fortran fully supports arithmetical expressions with correct
precedences, exponentiation, and many built-in mathematical functions. The last print statement
demonstrates complex literals with the read and imaginary part written as a pair (2i squared is -4).

PRINT *, 2 + 1.5 * 3 - 2 ** 3
PRINT *, 2 * ASIN(1.0)
PRINT *, (0, 2) ** 2
END

result:
-1.5

3.14159274
(-4.,0.)

2.2.2. Expressions and Variables

In Fortran, variables do not have to be declared in advance. However, they are strongly typed. How is this
possible? If a variable is not declared explicitly, the type is derived from the first character of the
variable’s name. By default, all variables starting with with a character between "I" and "N" are integers,
and all others are real numbers.

I=55
X=55
PRINT *, I, X
END

result:
55 55.
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Chapter 2. Fortran

Note the period in the output indicating the real number. The implicit typing rules can be changed using
the IMPLICIT statement.

IMPLICIT INTEGER(X-Z)
X=55
PRINT *, X
END

result:
55

In general, Fortran does a lot implicitly, which keeps programs short, but sometimes also leads to
surprises. Assigning a real number to an integer, for example, automatically truncates the number.

I=5.6
PRINT *, I

result:
5

To be on the safe side, it is better to declare variables explicitly. This is done by stating the type followed
by the names of the variables.

DOUBLE PRECISION X, Y
X=5.6
Y=1.5E-10
PRINT *, X, Y
END

result:
5.5999999 1.49999999E-10

Table 2-1> lists the six types available in Fortran.

Table 2-1. Fortran types

Name Description Sample Declaration Sample Assignment

CHARACTER single 8-bit character; strings are
declared by "multiplying" the type
with the length of the string

CHARACTER NAME*20 NAME=’Homer’

INTEGER integer (corresponding to C’s
int ); typically 32 bit on 32 bit
architectures

INTEGER I I=1234

REAL single precision (32 bit) floating
point number (corresponding to
C’s float )

REAL X X=-1.23E-3

5



Chapter 2. Fortran

Name Description Sample Declaration Sample Assignment

DOUBLE PRECISION double precision (64 bit) floating
point number(corresponding to C’s
double )

DOUBLE PRECISION X X=-1.23D-3

COMPLEX single precision complex floating
point number

COMPLEX Z Z=(1.23, 2.34)

LOGICAL boolean LOGICAL B B=.TRUE.

The two boolean values are called.TRUE. and.FALSE. . Fortran77 has a very limited character set
which does not even contain the< or > symbol. Therefore, comparison operators are denoted by
shortcuts for the english expressions..LT. , for example, means "less than" and.NE. means "not equal".
Fortran99 now also provides the usual operator such as<= and/= .

B=X .LE. 5.0 .AND. 5 > 4)

2.2.3. Arrays

Since vectors and matrices play a very important role in numerical computations, arrays are one of
Fortran’s strengths. To define an array, we add the dimensions to the variable declaration. Indexing starts
at one.

2.2.4. Functions

Fortran uses the function name as a variable. This means that we define the return type just like we define
a variable, and we can use the function name to manipulate the return value just like any other variable.

PROGRAM FUNCTION_TEST
PRINT *, ’1.5 + 2.5=’, ADD(1.5, 2.5)
END
FUNCTION ADD(X, Y)
REAL X, Y, ADD
ADD = X + Y
END

6



Chapter 2. Fortran

Bibliography

[PAGE95]> is nice, compact introduction to Fortran77 which is available for free on the Internet (the
book is out of print).

Clive G. Page, http://www.glue.umd.edu/~nsw/fortran/tutorial/prof77.ps, 1995,Professional
Programmer’s Guide to Fortran77.
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Chapter 3. Common Lisp

Lisp is one of the oldest programming languages which is still in use (only Fortran is older). It was
developed by John McCarthy in the late 1950’s leading to the first Lisp interpreters in 1959. During the
next 20 years a number of dialects developed which motivated a standardization effort during the 1980’s
which culminated in the definition of ANSI standard in 1992.

Common Lisp is a big language. Whether it is list processing, string formatting, or objects and classes:
Lisp has always something special to offer. I can only hope that this chapter gives you an idea what you
can do with Lisp. There is a light weight Lisp dialect, Scheme, which is built on the same foundation, but
is much smaller (and in some areas cleaner).

3.1. Software and Installation

There are several good open source implementations of Common Lisp. Two popular choices are

• Clisp (http://clisp.cons.org), another GNU Common Lisp implementation, compiling to bytecode and
therefore slower than the alternatives.

• CMU Common Lisp (http://www.cons.org/cmucl/) (CMUCL), a native Common Lisp compiler
originally developed at the Carnegie Mellon University.

Most examples in this chapter can be run with any of these Common Lisp implementations. For Linux,
they are available as package of the standard distributions (e.g., Debian packages "clisp" and "cmucl").
On Windows, the easiest choice is Clisp, for which a Windows binary is available at the official Clisp site.
To install it, unpack the zip archive and follow the instructions in the readme file. In the configuration file
config.lisp , just adapt the location of the clisp installation in the definition of*load-paths* to the
where you unpacked the zip file (e.g.,c:\\Program Files\\clisp-2.32\\...\\ ).

I have used Clisp for the most part and later CMU Common Lisp (for example, to run the database
examples).

3.2. Quick Tour

3.2.1. Lists and Expressions

To somebody (like me) used to "normal" procedural programming languages with a rich syntax, Lisp is
just different. The syntax consists basically of nested sequences of literals enclosed in parentheses. No
keywords, no indentation (like in Python), no statements separated by periods or semicolons, no curly
braces. However, there is one intriguing advantage to this approach: code and data use the same
presentation and can be treated and manipulated with the same means.

8



Chapter 3. Common Lisp

The examples follow Geoffrey Gordon’s lisp tutorial and some examples from Paul Graham’s "Common
Lisp" book. Starting clisp leads us to a Lisp shell similar to the Python shell in the first chapter.

i i i i i i i ooooo o ooooooo ooooo ooooo
I I I I I I I 8 8 8 8 8 o 8 8
I \ ‘+’ / I 8 8 8 8 8 8

\ ‘-+-’ / 8 8 8 ooooo 8oooo
‘-__|__-’ 8 8 8 8 8

| 8 o 8 8 o 8 8
------+------ ooooo 8oooooo ooo8ooo ooooo 8

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2002

[1]>

It works similar to the Python shell in that expression are evaluated and the result is shown in the shell.
This means, that our "Hello World" program is again the shortest possible version:

> "Hello World"
"Hello World"
>

Lisp is just echoing the string value "Hello World". The differences between Lisp and other languages
become apparent once we try to start evaluating simple expressions. The only way to evaluate something,
is to enclose a function (i.e., the symbol of a function) followed by its arguments in parentheses. For an
expression such as "4 + 5", this means that we have to follow the symbol "+" with the arguments "4" and
"5".

> (+ 4 5)
9

In other words: Lisp always uses prefix notation (remember Forth, which does the opposite?). For
numerical expression this implies that you have to take care of the preference rules yourself using plenty
of parentheses.

> (+ (* 2 3) (* 4 5))
26

There is also an advantage to this notation. In general, you can apply an arithmetic operator (and many
other functions) to more then two arguments without repeating the operator, for example:

> (* 2 3 4 5)
120

9
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As we see, Lisp treats the first element of a list a function which is then applied to the remaining
elements in the list. The syntax is extremely simple: only parentheses and a few quotation symbols (as
we will see below) are treated as special tokens. Otherwise, all kinds of characters can be combined to
form symbols, and the symbols are separated with white space. We could call a variable or function
*+-x%z5/}$ . This can sometimes be surprising, because what looks like an arithmetic expression, e.g.,
3*4+5 is just another symbol. Another remark: symbols are case insensitive, that is, the symbolsxY and
Xy are identical and will be shown in the default mode asXY.

The Lisp expressions we have seen are calledformsand the first element is called theform function. Lisp
uses this kind of syntax even if the first element is not a real function, but instructs Lisp to perform some
special action. Such a form is called aspecial formand the first element is either a macro or a special
built-in operator. In this short introduction we will not distinguish the different forms and always talk
about forms and functions. Syntactically, all forms look the same.

As an example, consider a situation where we don’t want the default behavior evaluating a form, but are
instead interested in the list as such. In this case, we need to quote it. Quoting can’t be a normal function
since it changes the behavior of the Lisp system. Hence, there is a specialquote form which turns the
form evaluation off, and, since lists are such prominent data structures in Lisp, you can alternatively just
put a single quote in front of the list.

> (quote (1 2 3))
(1 2 3)
> (list 1 2)
(1 2)
> ’(1 2 3)
(1 2 3)

Not surprisingly, Lisp comes with a large library of functions manipulating lists. The most fundamental
ones give you the head (first element) or the tail (the rest) of a list, or, as the opposite, create a new list
from a given head and tail.

> (first ’(1 2 3))
1
> (rest ’(1 2 3))
(2 3)
> (cons 1 ’(2 3))
(1 2 3)
> (list 1 2 3)
(1 2 3)
> (length ’(1 2 3))
3

In older programs you will still find the original namescar andcdr instead offirst andrest . The old
names date back to the first implementation of Lisp. There are many ways to access parts or elements of
a list besides head and tail. Here are the most often used functions:

> (first ’(1 2 3 4))
1

10
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> (second ’(1 2 3 4))
2
> (third ’1 2 3 4))
3
> (nth 3 ’(1 2 3 4))
4
> (nth 0 ’(1 2 3 4))
1
> (elt ’(1 2 3 4) 3)
4
> (nthcdr 2 ’(1 2 3 4 5))
(3 4 5)
> (last ’(1 2 3 4))
(4)
> (last ’(1 2 3 4 5) 2)
(4 5)

Note the two functionsnth andelt used to access individual elements in a list. The new functionelt

works for all kinds of sequences whereas the oldnth works for lists only. Annoyingly, the two functions
use a different argument order. Besides the core functionscons andlist , there are also many functions
creating new lists. Note, however, that these functions are different from the list manipulation functions
we have seen in the more procedural oriented languages. The functions here always create new lists and
leave the original ones unaltered.

> (append ’(1 2 3) ’(4 5 6) ’(7 8 9))
(1 2 3 4 5 6 7 8 9)
> (remove 2 ’(1 2 3 4))
(1 3 4)

There is a corresponding set of "destructive" list functions, but they are rarely used. First, moving away
from the functional programming style makes it harder to follow the programs logic. Second, the
non-destructive list functions are implemented very efficiently. The main overhead is the additional
memory used.

Before we can define more interesting examples, we have to learn how to use variables. Variables are set
using thesetf function (which is actually a macro). If the variable does not exist yet, it is created
automatically.

> (setf x "blah")
"blah"
> x
"blah"
> (setf x 1234)
1234
> x
1234
> (setf x ’(1 2 3))
(1 2 3)

11
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More general, you can usesetf to assign a new value to any "settable" place (the alternativesetq is
restricted to setting variables). As an example, Lisp allows you to change a value in a list usingsetf

combined with the list accessor function.

> (setf x ’(1 2 3 4))
(1 2 3 4)
> (setf (elt x 2) 55)
55
> x
(1 2 55 4)

This is a first example of a destructive list function. Other useful examples are the stack functionspush

andpop .

> (setf x nil)
NIL
> (push 4 x)
(4)
> (push 5 x)
(5 4)
> (pop x)
5
> x
(4)

The variables defined withsetf are global and therefore should be avoided. Local variables are defined
using the let statement.

> (let ((x 5) (y 6))
(+ x y))

11

This is a first example of a typical nested Lisp statement. Everything is expressed with nested lists. The
let function takes two arguments: a list of local variable definitions and an expression. The local
variable definitions are name-value pair. In this example we are defining two variables,x andy , set to 5
and 6, respectively. The scope of these variables is the expression given as the second argument to the
let function. You may be able to guess now how control statements are written in Lisp.

> (if (> 1 2) 5 6)
6
> (setf x 50)
50
> (cond ((< x 10) "small")

((< x 100) "medium")
(t "big"))

"medium"
> (case x

(10 "ten")
(20 "twenty")
(otherwise "some other number"))

12
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"some other number"

The if function, for example, has three arguments: the condition, the expression returned if the condition
evaluates to true, and the expression returned if the condition is false. And since we are dealing with
common Lisp, there is not just one conditional expression, but a whole set, the most useful ones besides
if beingcond andcase .

[34]> (do ((i 0 (+ i 1)))
((> i 5))

(format t "i=~A~%" i))
i=0
i=1
i=2
i=3
i=4
i=5

Thedo loop is similar to thefor loop in C. Like theif function it has three arguments. The first
argument is a list of loop variable definitions, the second argument contains the stop condition and
optionally expression to be evaluated afterwards, and the third argument is the loop’s body. A loop
variable definition consists of three expressions: the name of the loop variable, its initial value, and the
update expression to be evaluated at the end of the loop. In Java, the same loop would look like:

for (int i=0; i<=5; ++i) {
System.out.println("i=" + i);

}

3.2.2. Functions

Next to lists, functions are the most prominent elements in Lisp (it’s a functional language after all). A
function is defined using another function calleddefun .

> (defun times2 (x) (* 2 x))
TIMES2
> (times2 55)
110
> (defun fac (n) (if (< n 2) 1 (* n (fac (- n 1)))))
FAC
> (fac 5)
120

The definition of the faculty function not only shows that you can define functions in a compact manner
(including recursion), but also that the parentheses add up quickly. When writing Lisp programs, an
editor showing matching parentheses helps a lot as does proper indentation:

> (defun fac (n)
(if (< n 2)

13



Chapter 3. Common Lisp

1
(* n (fac (- n 1)))))

FAC

Optional and keyword arguments are possible (possibly with default) and so are variable argument lists.
The optional arguments of a function are introduced by the keyword&optional followed by pairs
containing the name of the argument and the default value.

> (defun times2 (x &optional (y 1)) (* x y 2))
TIMES2
> (times2 10)
20
> (times2 10 2)
40>

Similarly, keyword arguments follow&key . Each keyword argument is either just the name of the
argument or a pair of name and default value like in the case of optional argument.

> (defun linfunc (x &key a (b 0)) (+ (* a x) b))
LINFUNC
> (linfunc 10 :a 2)
20
> (linfunc 10 :a 2 :b 5)
25

When calling a function with a keyword argument, the name of the argument is preceded with a colon.
Finally, variable argument lists can be passed as lists to a function using the&rest parameter definition.

> (defun vararg (x &rest r) (print x) (print r))
VARARG
> (vararg 5)

5
NIL
NIL
> (vararg 1 2 3 4 5)

5
(2 3 4 5)
(2 3 4 5)

As seen above for thecar andcdr functions, the result of a function can be used to set the
corresponding value. To define such a function ourselves,defun is used together withsetf .

> (defun primo (l) (car l))
PRIMO
> (defun (setf primo) (x l) (setf (car l) x))
(SETF PRIMO)
> (setf y ’(1 2 3))
(1 2 3)

14
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> (primo y)
1
> (setf (primo y) 55)
55
> y
(55 2 3)

So what is a function? Usingfuncall , we can apply a function explicitly, but when we try to apply our
times2 function, we receive an error message.

> (funcall times2 2)
EVAL: Die Variable TIMES2 hat keinen Wert.

This means that the symboltimes2 does not have a value as a variable (but as a function). Functions and
variables live in different worlds. More precisely, Common Lisp is a two cell Lisp dialect. What does this
mean? Internally, a symbol is represented as a structure. In Common Lisp, this structure has two slots (or
cells), one for the value of the symbol treated as a variable, one for the symbol treated as a function.
Having seen languages such as Python and Smalltalk this strikes us as odd. Why not treat functions as
any other value (or object)? It looks like this is one of the things Common Lisp has carried over from its
beginnings. The light-weigth Lisp dialect Scheme uses the one cell approach. To put Common Lisp in
perspective, don’t forget that some modern languages (e.g., Java) do not treat functions as values at all.

Coming back to our example, we can apply our function using its symbol’times2 .

> (funcall ’times2 4)
8

funcall knows how to get the function for a given symbol (from the symbol’s function cell). This help
us with funcall , but we still can’t assign functions to other symbols or pass them as arguments. That is
we can’t treat functions as values (or objects) yet. To get the function object (called closure in the
functional world), there is a special function calledfunction , and, since it is used quite often, the prefix
#’ as a shortcut.

> (funcall (function times2) 4)
8
> (funcall #’times2 4)
8
> (print #’times2)
#<CLOSURE TIMES2 (X) ...>

Hence,funcall takes either a closure or a symbol. When given a symbol,funcall retrieves the
function from the function cell of the symbol.

We have seen anonymous functions in the form of Python’s lambda expressions. In Lisp, a lambda
expression looks like a function definition with thedefun replaced bylambda . A lambda expression
returns a function object or closure directly.

15
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> (lambda (x) (+ x 2))
#<CLOSURE :LAMBDA (X) (+ X 2)>
> (funcall (lambda (x) (+ x 2) 3))
5
> (setf x (lambda (x) (+ x 2)))
#<CLOSURE :LAMBDA (X) (+ X 2)>
> (funcall x 3)
5

Now we can go from functions to closure and define closures directly, but we can’t turn these closures
into new functions. In the example above,x is not a function.

> (x 3)
*** - EVAL: the function X is undefined

The missing link issymbol-function which can be used in combination withsetf to set a function,
that is, the function cell of a symbol.

> (setf (symbol-function ’add2) (lambda (x) (+ x 2)))
#<CLOSURE :LAMBDA (X) (+ X 2)>
> (add2 3)
5

Defining a function withdefun is equivalent to setting thesymbol-function of a symbol to a closure.

There are two ways to get the function object from a symbol, either by applyingfunction to the
function or by applying symbol-function to the symbol

> (function +)
#<SYSTEM-FUNCTION +>
> (function add2)
#<CLOSURE ADD2 (X) ... >
> (symbol-function ’+)
#<SYSTEM-FUNCTION +>
> (symbol-function ’add2)
#<CLOSURE ADD2 (X) ... >

3.2.3. More Collections

Now that we know lists and functions we can tackle more complicated list processing. Let’s start with the
familiar map and reduce functions.

> (mapcar #’(lambda (x) (* 2 x)) ’(1 2 3))
(2 4 6)
> (map ’list #’(lambda (x) (* 2 x)) ’(1 2 3))
(2 4 6)
> (reduce #’+ ’(1 2 3 4))

16
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10
> (reduce #’+ ’(1 2 3) :initial-value 10)
16

As you can imagine, the cryptic namemapcar denotes the original function. Themap function belongs
to a set of relatively new functions in Common Lisp which generalize the original versions to arbitrary
sequences. The first argument is always the type of the result. The filter function is calledremove-if ,
but otherwise works as expected.

> (remove-if #’oddp ’(1 2 3 4 5))
(2 4)

Thedolist function iterates through a list (just like Smalltalk’sdo: ).

> (dolist (i ’(1 2 3 4)) (print i))

1
2
3
4
NIL

Besides these straight-forward functions there is an almost overwhelming amount of functions which
look for elements, check properties of the list (e.g., do all elements satisfy a certain condition), and so
forth. In most cases, you do not need to iterate through the list yourself, but can apply one of these
functions.

>

For now it looks like Lisp really is a pure list processing language. While this was true in the beginning,
Common Lisp now supports a whole range of collection classes. Starting with hash tables, the Lisp
syntax requires some getting used to, but we can do all the things we know other high level languages.

> (setf x (make-hash-table :test ’equal))
#S(HASH-TABLE EQUAL)
> (setf (gethash "blah" x) 55)
55
> (gethash "blah" x)
55 ;
T
> (setf (gethash "blub" x) 66)
66
> (maphash #’(lambda (key value)

(format t "~&~A=~A" key value)) x)
blub=66
blah=55
NIL

17
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The first expression creates a hash table which uses theequal operator for the equality test when
looking for a key. Thegethash function looks for a value for a given key. It is a settable function so that
we can also use it in combination withsetf to insert a key-value pair into the table.

Common Lisp also offers multidimensional arrays of fixed size. An array is constructed using the
make-array function whose first argument is the list of sizes, one for each dimension (or just a single
size in case of a one-dimensional array).

> (setf x (make-array ’(2 3) :initial-element 0.0))
#2A((0.0 0.0 0.0) (0.0 0.0 0.0))
> (setf (aref x 1 2) 55)
55
> x
#2A((0.0 0.0 0.0) (0.0 0.0 55))

Elements can be get and set using thearef function which is the equivalent ofelt for arrays.
One-dimensional arrays are vectors and can alternatively be contructed with thevector function which
works like thelist function, but constructs a vector instead of a list.

> (setf x (vector 1 2 3))
#(1 2 3)
> (svref x 1)
2

An instead ofaref , one can use the more efficient "simple vector reference" functionsvref .

3.2.4. Structures

Lisp’s equivalent of a C structure is defined withdefstruct . This special form creates the type and
associated constructor, copy, and accessor functions.

> (defstruct point x y)
POINT
> (setf p (make-point :x 5 :y 6))
#S(POINT :X 5 :Y 6)
> (format t "p=~A" p)
p=#S(POINT :X 5 :Y 6)
> (setf q (copy-point p))
#S(POINT :X 5 :Y 6)
> (setf (point-y p) 10)
10
> p
#S(POINT :X 10 :Y 6)
> q
#S(POINT :X 5 :Y 6)>
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Note that the constructor and copy function end with the structure’s name, whereas the accessor
functions use it as a prefix.

3.2.5. Input and Output

In many programming languages reading complex data structures is a serious task. As an example, most
applications use some kind of configuration file which is interpreted when starting the application. One
could even argue that technologies such as XML (used for the representation of hierarchical data
structures, not for markup of text) with its corresponding parsers and interfaces were invented to remedy
the deficiencies of these programming languages. In Lisp, reading an arbitrarily complex Lisp expression
is a single call toread .

> (setf x (read))
(1 2 ("blah" "blub"))
(1 2 ("blah" "blub"))
> x
(1 2 ("blah" "blub"))

Read reads exactly one Lisp expression from the input stream. Without arguments,read reads from
standard input. The second line shows my input, the nested list(1 2 ("blah" "blub")) . The second
line is the return value of thesetf function. Once we have read the Lisp expression, we can process it
like any other Lisp expression. As an example, we can read a lambda expression and execute it.

> (setf x (read))
(lambda (x) (* 2 x)
(LAMBDA (X) (* 2 X)
> (funcall (eval x) 5)
10

A configuration file could just contain a Lisp expression.

Lisp has mainly two modes when printing objects: the output is either meant for a human being or for a
program. As an example, a string is surrounded by double quotes when printed for a computer. This way,
a reading program can reconstruct the type. The human reader just gets the string itself. I havn’t found an
explanation for the extremely mnemonic function names:princ is the people oriented print function,
prin1 the one for programs, andprint is like prin1 , but starts with an additional newline.

> (princ "bla")
bla
"bla"
> (prin1 "bla")
"bla"
"bla"
> (print "bla")

"bla"
"bla"
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Playing with standard input and output is one thing, but in the real world, we would like to read from and
write to files. Like many I/O systems, Lisp I/O is stream oriented. The standard input and output we have
used so far are examples of streams. The proper starting point to accessing files in Lisp is to create a
pathname .

> (setf path (make-pathname :name "test.dat"))
#P"test.dat"

Common Lisp’s pathname library offers an abstraction of file names on the different operating systems.
Once we have a path, we can open the file, write to it, and close it again.

> (setf out (open path :direction :output))
#<OUTPUT BUFFERED FILE-STREAM CHARACTER #P"test.dat" @1>
> (princ "Hello World" out)
"Hello World"
> (close out)
T

The problem with this code is that we have to make sure that theclose function under any
circumstances unless we want to risk a file descriptor leak. A better way to achieve the same thing is to
usewith-open-file .

> (with-open-file (out path :direction :output)
(format out "~A~%" "Hello World")
(format out "~A~%" "Hello Again"))

"Hello World"

Thewith-open-file function ensures that the specified stream is available for the block of
expressions and that it is properly closed afterwards even in case of an error. You can view it as a
predecessor of theusing statement in C#. The same can be used to read the file.

> (with-open-file (in path :direction :input)
(format t "line: ~A" (read-line in)))

line: Hello World
NIL

Here are some more interesting functions reading from a file.

> (defun process-lines (in task)
(do ((line (read-line in nil ’eof) (read-line in nil ’eof)))

((eql line ’eof))
(funcall task line)))

PROCESS-LINES
> (with-open-file (in path :direction :input)

(process-lines in #’print)))

"Hello World"
"Hello Again"
NIL
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The functionprocess-lines reads a stream line by line applying a function to each line. We then
apply this new function to the implicitly opened input streamin and simple print each line.

3.3. More Features

3.3.1. Object Oriented Programming

One of the reasons Lisp is still alive after so many years is its extensibility. As an example, Lisp can be
easily extended with object oriented features, and Common Lisp defines a sophisticated package called
the Common Lisp Object System or CLOS (pronounced "see-loss") for short, which offers everything
you need to develop object oriented programs including some extensions not available in other OO
languages.

Let’s develop an account class similar to the one we have used as a Smalltalk example.

> (use-package "CLOS")
T
> (defclass account ()

((balance :accessor balance :initform 0.0 :initarg :balance)))
#<STANDARD-CLASS ACCOUNT>

Once we have imported the CLOS package (this step is required only for Clisp), thedefclass call
defines a class calledaccount . The name of the class is followed by the list of superclasses which in our
case is empty. Next is a list of attribute definitions. For now, our account has a single attributebalance .
Attribute definitions are lists starting with the name of the attribute followed by a number of keyword
arguments. We can define a default value for the attribute (:initform ), whether it should be part of a
constructor call (:initarg ), and the accessor methods (reader/getter, writer/setter, or both) we would
like to have. In our example, the attributebalance has the default value zero, can be set during the
constructor call using the:balance keyword, and we would like a reader and a writer method, both
calledbalance . Lisp’s generic constructor function (comparable tonew in other OO languages) is
calledmake-instance .

> (setf a (make-instance ’account :balance 10.0))
#<ACCOUNT #x1A4EE1F1>
> (balance a)
10.0
> (setf (balance a) 55)
55
> (balance a)
55

Note the call of the writer method usingsetf . The next thing we would like to do with the account is
spending money.
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> (defmethod spend ((a account) amount)
(setf (balance a) (- (balance a) amount)))

> (spend a 5)
50
> (balance a)
50

This definition looks more like a normal function definition rather than a method definition as we know it
from the object oriented languages we have seen so far. The instancea does not play a prominent role.
The argument list consists of simple arguments likeamount and object arguments which are given as
name and class. We could have as easily defined the method to take the amount as the first argument and
the account object as the second.

> (defmethod spend2 (amount (a account))
(setf (balance a) (- (balance a) amount)))

> (spend2 5 a)
45

We can also pass multiple objects.

> (defmethod sum ((a account) (b account))
(+ (balance a) (balance b)))

> (sum a a)
90

To see the polymorphic behaviour of generic functions, we need a sub class of account.

(defclass checking-account (account)
((history :accessor history

:initform nil)))

Thechecking-account class extendsaccount with a history attribute which is initially set tonil .
We will use this history attribute to keep track of the transactions on our account. To this end we need to
change the implementation of thespend method.

(defmethod spend ((a checking-account) amount)
(progn

(setf (balance a) (- (balance a) amount))
(setf (history a) (cons ’(spend amount) (history a)))))

In addition to updating the balance, we add the type and amount of the transaction to the history. Let’s
see how the new class behaves.

> (setf b (make-instance ’checking-account :balance 100.0))
#<CHECKING-ACCOUNT #x2041E6ED>
> (balance b)
100.0
> (spend b 25.0)
((SPEND . 25.0))
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> (spend b 10.0)
((SPEND . 10.0) (SPEND . 25.0))
> (balance b)
65.0
> (history b)
((SPEND . 10.0) (SPEND . 25.0))

As expected, the new implementation of thespend method applied to the checking account. Compared
to other object-oriented languages, CLOS does not restrict this kind of polymorphism (dynamic dispatch)
to a single argument. Generic functions can be specialized with respect to any of their arguments.

What we don’t like about the implementation of thespend method for the checking account is the
repetition of the code of the account’s original implementation. Of course, Common Lisp has a way to
achieve the same behavior without this code duplication. We can add behavior before or after an existing
method by just placing the:before or :after keywords behind the method name. An equivalent better
implementation is therefore

(defmethod spend :after ((a checking-account) amount)
(setf (history a) (cons ’(spend amount) (history a))))

3.3.2. Macros

The flexibility of Lisp comes from the possibility to extend Lisp using Lisp itself. Since programs and
data use the same structure, we can use functions to create new programs. The key for doing this
efficiently (at compile time) are macros. They are similar to C macros in that they generate code, but in
the case of Common Lisp, macros have the full power of Lisp to construct this code. Here is a macro
adding awhile statements to Lisp.

> (defmacro while (test &rest body)
‘(do ()

((not ,test))
,@body))

WHILE
> (setf i 0)
0
> (while (< i 5) (print i) (incf i))

0
1
2
3
4
NIL
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This example shows a number of typical macro features. First, the definition looks like the definition of a
function apart from the use ofdefmacro instead ofdefun . The macro has a normal parameter list
including a variable argument listbody indicated by the&rest parameter. The body of the macro
definition starts with a symbol we have not used before: the back quote. By iself, the back quote works
just like the normal "forward" quote protecting its argument from evaluation.

> ’(a (+ 4 5) b)
(A (+ 4 5) B)
> ‘(a (+ 4 5) b)
(A (+ 4 5) B)

But in contrast to the normal quote, one can turn the evaluation on again for certain sub expressions by
preceding those expression with a comma.

> ‘(a (+ 4 5) b)
(A 9 B)

Finally, the odd operator comma-at,@ expects a list argument and copies the elements of this list into the
output.

> (setf x ’(1 2 3))
(1 2 3)
> ‘(a x b)
(A X B)
> ‘(a ,x b)
(A (1 2 3) B)
> ‘(a ,@x b)
(A 1 2 3 B)

Combining all these features we can understand thewhile macro. A helpful tool for macro development
is themacroexpand-1 function which shows the generated Lisp code.

> (macroexpand-1 ’(while condition task))
(DO NIL ((NOT CONDIION)) TASK)
> (macroexpand-1 ’(while (< i 5) (print i) (incf i)))
(DO NIL ((NOT (< I 5))) (PRINT I) (INCF I))

The macro construct ado loop using the back quote syntax and inserting the test condition with comma
and the body of the while loop with the comma-at operator.

3.3.3. Exceptions

Exceptions as a means to organize error handling belong to the standard toolset of a modern
programming language. Lisp talks about conditions rather than exceptions, but the idea is the same. You
can raise a condition and thus interrupt the normal program flow, the condition can be caught using a
handler expression (handler-case ), and you can perform actions whether an exception is raised or not
using ...
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3.3.4. Analysis Functions

Common Lisp comes with a standard set of utilities which help to understand Lisp programs. Thetrace

function allows to switch on tracing for a function. This feature is especially useful for recursive
functions.

> (defun fac (n) (if (< n 2) 1 (* n (fac (- n 1)))))
FAC
> (trace fac)
;; Tracing function FAC.
(FAC)
> (fac 5)

1. Trace: (FAC ’5)
2. Trace: (FAC ’4)
3. Trace: (FAC ’3)
4. Trace: (FAC ’2)
5. Trace: (FAC ’1)
5. Trace: FAC ==> 1
4. Trace: FAC ==> 2
3. Trace: FAC ==> 6
2. Trace: FAC ==> 24
1. Trace: FAC ==> 120
120

With the functionuntrace tracing is switched off again. Thetime function can be used for simple
performance measurements (similar to the UNIX time command). This is particularly interesting when
comparing the interpreted version of a function to its compiled form which is about eight times faster.

> (defun f (n) (dotimes (i n) nil))
F
> (time (f 1000000))

Real time: 2.624 sec.
Run time: 2.5837152 sec.
Space: 0 Bytes
NIL
> (compile ’f)
F ;
NIL ;
NIL
> (time (f 1000000))

Real time: 0.34 sec.
Run time: 0.3304752 sec.
Space: 0 Bytes
NIL
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Together with Fortran and Lisp, Cobol (COmmon Business Oriented Language) is one of the oldest
programming languages. It was defined in 1960 at the DoD sponsored Conference on Data System
Languages (CODASYL). The first ANSI standard came out in 1968 with further updates in 1974
(Cobol74) and 1985 (Cobol85). A new version (with significant new features including Object-Cobol) is
on its way.

Without doubt, Cobol remains the most important language for business applications. There are a few
hundred billion lines of Cobol code in production and about five billion lines are still added every year.
Many reasons to have a closer look.

4.1. Software and Installation

Since Cobol is all about "real business", free Cobol compilers are rare. Among those, Tiny Cobol
(http://tiny-cobol.sourceforge.net/) seems to be the most mature. For this chapter, we use version 0.60 on
a Linux system. To installation from the source uses the standardconfigure , make, make install

sequence.

Tiny Cobol is a preprocessor which translates Cobol code to C. The installation comes with a large
number of examples (in thetest.code directory) which can be used as templates for the code samples
below. Compiling and running the "Hello world" program program then looks like this.

ahohmann@kermit:~/programming/cobol/book/hello$ make
htcobol -c -P -D -I/home/ahohmann/opt/share/htcobol/copybooks -I. example.cob
gcc -g -o example example.o -L/usr/local/lib -L/usr/lib -L/home/ahohmann/opt/lib -lhtcobol -lm -lncurses
ahohmann@kermit:~/programming/cobol/book/hello$ example
Hello World!

4.2. Quick Tour

4.2.1. Hello World

Here is the Cobol version of "Hello World".

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DISPLAY "Hello World!"
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STOP RUN.

It can not beat the "scripting" languages in terms of conciseness, but at least the program looks well
organized and readable. These are indeed two characteristics of Cobol programs. A Cobol program is
organized in a hierarchical structure consisting of divisions, sections, paragraphs, and sentences. At the
top of the hierarchy are the four divisions which we can already see in our first program. The
identification section gives some general information about the program (in our case just its name). The
next two division, environment and data, are dealing with files. Since our "Hello World" program just
writes to the screen, these divisions are empty. The actual program is contained in the procedure division.
In our example, it contains the two statements to print the message and stop the program. In the following
examples we often omit the divisions which are not required or clear from the preceding examples.

The format of a Cobol program is line-oriented (showing Cobol’s punchcard origins). A line is divided
into five areas as described inTable 4-1>.

Table 4-1. Areas of a Cobol Line

Columns Area Contents

1-6 line page and line number

7 indicator *: comment, -: continuation, /:
page skip

8-11 A division, section, paragraph
identifiers and some level numbers

12-72 B program items not belonging to A

73-80 program identification optional name of the program

The line and program identification area were useful in case two piles of punchcards got mixed up. When
using the areas A and B it is decisive where the code starts. As we have seen in the "Hello World"
program, the organizational identifiers start in area A, and the code statements in area B.

4.2.2. Variables and Arithmetic

Cobol is tailored for a particular kind of application: processing files consisting of character data
organized in fixed length records. This approach leads to a different way of defining data structures when
compared to "modern" languages. To describe a field in a record of characters we need to know how
many characters are used and how these characters are interpreted (e.g., as integers, decimal numbers, or
strings). In Cobol terms, we have to define thepictureof a field.

IDENTIFICATION DIVISION.
PROGRAM-ID. addition.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 A PICTURE 99V999.
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PROCEDURE DIVISION.
MOVE 1.5 TO A
ADD 1.5 TO A
DISPLAY "A=", A
STOP RUN.

Running the program results in the outputA=03.000 . The most interesting line is the definition of the
variableA in the working storage section. It starts with the elementary level77 (more on levels below)
followed by the name of the variable, thePICTUREkeyword (most often abbreviatedPIC ), and the
picture format99V999 . The format strings use a syntax which makes it easy to literally picture the field.
Each9 stands for a decimal digit and theV indicated the position of the decimal point. Hence, our
variableA represents a decimal number which occupies five characters, each of which must be a decimal
digit, and the last three digits are interpreted as the decimals. The string12345 is interpreted as the
decimal number 12.345 (which explains the way the result of our program is displayed). Next to the9

representing a decimal digit, the letterX representing an arbitrary character is the most often used format
symbol. We will see plenty of examples in the following sections.

Apart from the picture clause, the program demonstrates the rather wordy (but readable) way to perform
calculations with Cobol. Assignment uses theMOVE TOstatement, and similarly theADD TOstatement is
used to add a value to a variable. There are equally expressive ways to subtract, multiply, and divide.

WORKING-STORAGE SECTION.
77 A PICTURE 99V999.
77 B PICTURE 99V999.
PROCEDURE DIVISION.

MOVE 3.5 TO A
MULTIPLY 2 BY A
DISPLAY "A=", A
MULTIPLY A BY 3 GIVING B
DISPLAY "B=", B
STOP RUN.

result:
A=07.000
B=21.000

Without theGIVING clause, the result of the multiplication is stored in the second operand (which
therefore must be a variable). The division statementDIVIDE has even more variations using eitherBY

(mathematical order of arguments, dividend first) orINTO (opposide order).

WORKING-STORAGE SECTION.
77 A PICTURE 99V999.
77 B PICTURE 99V999.
PROCEDURE DIVISION.

MOVE 50 TO A
DIVIDE 10 INTO A
DISPLAY "A=", A
DIVIDE A BY 2 GIVING B
DISPLAY "B=", B
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STOP RUN.

result:
A=05.000
B=02.500

TheDIVIDE INTO version stores the result by default (without aGIVING clause) in the second operand.

ADDandSUBTRACTcan also take multiple arguments. Also note the special constantZEROSused to reset
the variableA.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 A PICTURE 99V999.
PROCEDURE DIVISION.

MOVE ZEROS TO A
ADD 1.5 2.5 10 TO A
DISPLAY "A=", A
SUBTRACT 3 1 FROM A
DISPLAY "A=", A
STOP RUN.

result:
A=14.000
A=10.000

For more involved computations, Cobol offers theCOMPUTEstatement which allows us to use arithmetic
formulas as in the following example. And, yes, Cobol uses the correct precedence rules.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 A PICTURE 99V999 VALUE 10.0 .
PROCEDURE DIVISION.

COMPUTE A = 4 + 1.5 * 3
DISPLAY "A=", A
STOP RUN.

result:
A=18.500

The example also demonstrates an initializer for the variableA using aVALUEclause.

All these computations were within the limits of our variableA. But what happens if the result does not
fit into the assigned field?

DATA DIVISION.
WORKING-STORAGE SECTION.
77 A PICTURE 99V999 VALUE 10.
PROCEDURE DIVISION.
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MULTIPLY 10 BY A
DISPLAY "A=", A
STOP RUN.

result:
00.000

The result vanishes! We will see later on, how to detect overflows in the program and act accordingly.
For now, we must assume that the fields were defined big enough.

4.2.3. Subroutines and Control Statements

After some basic expressions, we have usually tackled functions as the main means to structure a
program. Cobol does not support functions with arguments and return values, but uses subroutines to
organize a program into smaller units. Subroutines are simply paragraphs of the procedure division. Each
paragraph is introduced with a paragraph name starting in area A and consists of a sequences of
statements (all beginning in area B). Without arguments and return values, the communication between
these units relies on the shared access to the objects defined in the data devision. The statements in a
paragraph can be called (making it a subroutine) using thePERFORMstatement.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
MAIN.

PERFORM DISPLAY-HELLO
PERFORM DISPLAY-HELLO
PERFORM DISPLAY-BYE
PERFORM DISPLAY-BYE.
STOP RUN.

DISPLAY-HELLO.
DISPLAY "Hello World!".

DISPLAY-BYE.
DISPLAY "Bye!".

result:
Hello World!
Hello World!
Bye!
Bye!

The first paragraph is executed when starting the program (it does not have to be calledMAIN. The
PERFORMstatement executes the named paragraph. At the end of the paragraph, control is returned to the
calling paragraph. Note that theSTOPcommand is required at the end of the main routine. Otherwise, the
program will continue and execute the two subroutines (resulting in another "Hello World!" and "Bye!"
message).
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If we want to repeat an action multiple times, we can use add theTIMES clause to thePERFORM

statement.

PROCEDURE DIVISION.
MAIN.

PERFORM DISPLAY-HELLO 3 TIMES
STOP RUN.

DISPLAY-HELLO.
DISPLAY "Hello World!".

result:
Hello World!
Hello World!
Hello World!

To repeat an action while a certain condition holds, we combine thePERFORMstatement with theUNTIL

clause followed by the condition.

IDENTIFICATION DIVISION.
PROGRAM-ID. count.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 I PICTURE 99 VALUE 0.
PROCEDURE DIVISION.
MAIN.

PERFORM LOOP UNTIL I = 5
STOP RUN.

LOOP.
DISPLAY "I=", I
ADD 1 TO I.

result:
I=00
I=01
I=02
I=03
I=04

Cobol85 also has the equivalent of arepeat-until or do-while loop found in other languages by just
addingWITH TEST AFTERto thePERFORMclause.

WORKING-STORAGE SECTION.
77 I PICTURE 99 VALUE 0.
PROCEDURE DIVISION.
MAIN.

PERFORM LOOP UNTIL I = 5
STOP RUN.

LOOP.
DISPLAY "I=", I
ADD 1 TO I.
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For this example it does not make any difference whether we check the condition before or after the loop,
but in some cases we want the loop to be executed at least once or the condition only makes sense at the
end of the loop.

We can achieve the same thing without a subroutine using the second form ofPERFORM UNTILwhich
takes a sequence of statements (the body of the loop) instead of the subroutine.

WORKING-STORAGE SECTION.
77 I PICTURE 99 VALUE 0.
PROCEDURE DIVISION.
MAIN.

PERFORM WITH TEST AFTER UNTIL I = 5
DISPLAY "I=", I
ADD 1 TO I

END-PERFORM
STOP RUN.

result:
I=00
I=01
I=02
I=03
I=04

In fact, Cobol also offers an integer loop using theVARYINGclause of thePERFORMstatement.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 I PICTURE 99 VALUE 0.
PROCEDURE DIVISION.
MAIN.

PERFORM VARYING I FROM 1 BY 2 UNTIL I > 10
DISPLAY "I=", I

END-PERFORM
STOP RUN.

result:
I=01
I=03
I=05
I=07
I=09

It is also possible to nest multiple integer loops, for example, when indexing a multidimensional array.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
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DATA DIVISION.
WORKING-STORAGE SECTION.
77 I PICTURE 99.
77 J PICTURE 99.
PROCEDURE DIVISION.
MAIN.

PERFORM
VARYING I FROM 1 BY 1 UNTIL I > 3
AFTER J FROM I BY 1 UNTIL J > 3
DISPLAY "I=", I, " J=", J

END-PERFORM
STOP RUN.

result:
I=01 J=01
I=01 J=02
I=01 J=03
I=02 J=02
I=02 J=03
I=03 J=03

Continuing with control statements, Cobol of course supports the basic if-then-else.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
MAIN.

IF 10 IS LESS THAN 100
THEN

DISPLAY "Yes, that’s right"
ELSE

DISPLAY "No, that’s wrong"
END-IF
STOP RUN.

Note that lengthy (but readable)IS LESS THANcan be replaced by a< sign. Multiple if statement can
be combined in a case statement which is calledEVALUATEin Cobol.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 INPUT-VALUE PICTURE 99 VALUE 0.
PROCEDURE DIVISION.
MAIN.

DISPLAY "value: "
ACCEPT INPUT-VALUE
EVALUATE INPUT-VALUE

WHEN 1
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DISPLAY "ONE"
WHEN 2

DISPLAY "TWO"
WHEN 3

DISPLAY "THREE"
WHEN OTHER

DISPLAY "MORE"
END-EVALUATE
STOP RUN.

We use the opportunity to write our first interactive program which asks with theACCEPTcommand for
the value to be used in the case statement.

4.2.4. Data Structures

In the first section we have defined a single variable in the working storage section of the data devision.
We have used the level number 77 to indicate that the variable is elementary field. The level number will
become much clearer when looking at the following definition of a nested structure modelling a person.

IDENTIFICATION DIVISION.
PROGRAM-ID. addition.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PERSON.

05 FIRST-NAME PIC X(20).
05 LAST-NAME PIC X(20).
05 ADDR.

10 POSTAL-CODE PIC X(5).
10 CITY PIC X(20).
10 STREET PIC X(20).
10 STREET-NO PIC X(5).

PROCEDURE DIVISION.
MOVE SPACES TO PERSON
MOVE ’40547DUESSELDORF’ TO ADDR
DISPLAY ’CITY=’, CITY
STOP RUN.

A person consists of a first name, a last name, and an address. An address is comprised of postal-code,
city, street, and street number. The nested structure is defined in Cobol using level numbers. Fields with
the same level number belong to the same level of the nested structure. In our example we start with level
01 which has to be in area A. Since this field does not have a picture definition is must be a structure. On
the next level (we have chosen the level number 05) are first name, last name, and address. The first two
field are elementary fields and therefore must have a picture clause defining their size and format. The
address field is again a structure which needs to be further decomposed into elementary fields. Note the
use of the size subscripts simplifying the field formats.
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We can access the structure on all levels. The first statement of the procedure division resets the whole
person structure. Next, we set the address. And finally, we display the city as an individual field. If the
field names are unique (as in our example), the fields do not have to be qualified with their surrounding
structure (in C we would need to writeperson.addr.city to access the city). If the same field name
occurs in multiple places, it has to be qualified using theOF(or synonymouslyIN ) clause.

IDENTIFICATION DIVISION.
PROGRAM-ID. persons.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PERSON-1.

05 FIRST-NAME PIC X(20).
05 LAST-NAME PIC X(20).

01 PERSON-2.
05 FIRST-NAME PIC X(20).
05 LAST-NAME PIC X(20).

PROCEDURE DIVISION.
MOVE ’Homer’ TO FIRST-NAME OF PERSON-2
STOP RUN.

Besides composing fields to structures, Cobol supports arrays. In the simplest case, we can define an
array of fixed size of some elementary field by adding anOCCURSclause to the field definition.

IDENTIFICATION DIVISION.
PROGRAM-ID. addition.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MY-ARRAY.

05 A OCCURS 10 TIMES PIC 99.
77 I PIC 99 VALUE 0.
PROCEDURE DIVISION.

PERFORM VARYING I FROM 1 BY 1 UNTIL I > 10
COMPUTE A (I) = 5 + 2 * I

END-PERFORM
DISPLAY "A(5)=", A (5)
STOP RUN.

result:
A(5)=15

The individual elements of the array are accessed using the index in parentheses. Like Fortran and
Smalltalk (and unlike Lisp and the C family), indexing starts at one. There should be white space before
the open parenthesis (although Tiny Cobol does not complain if we omit the space), and we must not put
any white space inside of the parentheses.

Similarly, we can define fixed length arrays of structures by adding theOCCURSto the structure level.

IDENTIFICATION DIVISION.
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PROGRAM-ID. addition.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PERSON OCCURS 10 TIMES.

05 FIRST-NAME PIC X(20).
05 LAST-NAME PIC X(20).

PROCEDURE DIVISION.
MOVE ’Homer’ TO FIRST-NAME OF PERSON(3)
DISPLAY ’Third person:’, FIRST-NAME OF PERSON(3)
STOP RUN.

4.2.5. Files and Records

Since file (batch) processing is such a dominant area for Cobol programs, most Cobol books start with
what we will cover next: the definition of files and records. Here is a small program which reads a file
containing the items of an invoice and computes the total of the invoice.

IDENTIFICATION DIVISION.
PROGRAM-ID. invoice.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT INVOICE ASSIGN TO ’invoice.dat’

ORGANIZATION IS LINE SEQUENTIAL.
DATA DIVISION.
FILE SECTION.
FD INVOICE LABEL RECORDS ARE STANDARD.
01 ITEM.

05 NAME PIC X(20).
05 AMOUNT PIC 9(3)V.
05 PRICE PIC 9999V99.

WORKING-STORAGE SECTION.
77 MORE-RECORDS PIC XXX VALUE ’YES’.
77 TOTAL PIC 9(5)V99 VALUE ZEROS.
PROCEDURE DIVISION.
MAIN.

OPEN INPUT INVOICE
PERFORM UNTIL MORE-RECORDS = ’NO ’

READ INVOICE
AT END

MOVE ’NO ’ TO MORE-RECORDS
NOT AT END

COMPUTE TOTAL = TOTAL + AMOUNT * PRICE
END-PERFORM
DISPLAY ’TOTAL=’, TOTAL
CLOSE INVOICE
STOP RUN.
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The file contains records of fixed length. Each record has three fields: the name of the item, the amount
of items bought, and the price per item. We recognize the structure definition in the file section which
looks just like the structure definitions in the working storage section we have used before. The new part
is the mapping to a file. Cobol separates the logical file from the physical implementation. The logical
view is defined in the file section of the data division. Each logical file is defined by a file descriptor (FD)
paragraph in the file section. The environment division contains the mappings of the logical files defined
in the data division to the physical files controlled by the operating system. For each file, there is a
FILE-CONTROLparagraph with aSELECTstatement which assigns the name of the logical file to a
physical file name. The environment division is the only part of the Cobol program which depends on the
operating system and has to be adapted when migrating to a new environment.

Since we are running on a PC, we have added theORGANIZATION IS LINE SEQUENTIALclause
which causes Cobol to interpret each line in the file as a record. Without this instruction, there is no
separation (newline) between the records.

Once we have defined the record structure of our file, a simpleREADstatement reads a new record into
the structure so that we can access the individual fields. TheREADstatement takes two blocks: one for
the normal case when a new record has been read and one for reaching the end of the file. In our case we
either update the total or set theMORE-RECORDSflag toNO.

4.3. More Features

4.3.1. Table Search

Since batch programs often deal with reference data kept in tables, e.g., a list of prices, Cobol makes it
easy to look up data in tables. One solution is the use of indexed arrays in combination with theSEARCH

statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. price-table.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEM-TABLE.

05 ITEMS OCCURS 3 TIMES INDEXED BY ITEM-INDEX.
10 ITEM-NAME PIC X(20).
10 ITEM-PRICE PIC 999V99.

77 ITEM-INPUT PIC X(20).
PROCEDURE DIVISION.
MAIN.

PERFORM INIT-PRICE-TABLE.
DISPLAY ’ENTER NAME OF ITEM:’
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ACCEPT ITEM-INPUT
SET ITEM-INDEX TO 1
SEARCH ITEMS

AT END DISPLAY ’UNKNOWN ITEM’
WHEN ITEM-INPUT = ITEM-NAME (ITEM-INDEX)

DISPLAY ’PRICE=’, ITEM-PRICE (ITEM-INDEX)
STOP RUN.

INIT-PRICE-TABLE.
MOVE ’APPLE’ TO ITEM-NAME (1)
MOVE 0.50 TO ITEM-PRICE (1)
MOVE ’ORANGE’ TO ITEM-NAME (2)
MOVE 1.50 TO ITEM-PRICE (2)
MOVE ’PEAR’ TO ITEM-NAME (3)
MOVE 0.75 TO ITEM-PRICE (4).

The working storage section defines a table which contains the prices for some items. To keep the
example simple, we fill our price table with hard-coded values in the program itself. Normally, the table
would be read from reference data stored in a file or database.

The first new construct is the index attached to the array ofITEMS. We can view it as a loop variable for
the array. We can set the index using theSETstatement, but we do not have to define the index variable
explicitly in the working storage section as we have done earlier. The compiler takes care of the correct
size of the variable.

The index is used implicitly in theSEARCHstatement. TheSEARCHstatement is comparable to the
for-in loops in languages like Python or Perl, only that the loop variable is not part of the loop
statement, but defined as part of the array. The interesting part is the body of theSEARCHstatement. It
consists of the (optional)AT ENDclause telling what to do if the end of the array is reached and any
number ofWHENclauses defining the search conditions and actions. For each item in the table, the search
loop checks the conditions of theWHENclauses. If the condition is true, the associated action is
performed and the search loop left.

While we could easily achieve the same with aPERFORMstatement, theSEARCHcommand turns the
focus away from the (imperative) loop to what we are looking for. Because of this, it is easy to exchange
the algorithm used to find the entry. Adding the keywordALL to theSEARCHstatement, we switch from
linear to binary search.

IDENTIFICATION DIVISION.
PROGRAM-ID. price-table.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEM-TABLE.

05 ITEMS OCCURS 3 TIMES
ASCENDING KEY IS ITEM-NAME INDEXED BY ITEM-INDEX.

10 ITEM-NAME PIC X(20).
10 ITEM-PRICE PIC 999V99.

77 ITEM-INPUT PIC X(20).
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PROCEDURE DIVISION.
MAIN.

PERFORM INIT-PRICE-TABLE.
DISPLAY ’ENTER NAME OF ITEM:’
ACCEPT ITEM-INPUT
SEARCH ALL ITEMS

AT END DISPLAY ’UNKNOWN ITEM’
WHEN ITEM-INPUT = ITEM-NAME (ITEM-INDEX)

DISPLAY ’PRICE=’, ITEM-PRICE (ITEM-INDEX)
STOP RUN.

INIT-PRICE-TABLE.
MOVE ’APPLE’ TO ITEM-NAME (1)
MOVE 0.50 TO ITEM-PRICE (1)
MOVE ’ORANGE’ TO ITEM-NAME (2)
MOVE 1.50 TO ITEM-PRICE (2)
MOVE ’PEAR’ TO ITEM-NAME (3)
MOVE 0.75 TO ITEM-PRICE (4).

Of course, the binary search requires the table to be sorted (which we ensured in the initialization
routine), and we have to specify the sort order of the table in the working storage section.

4.3.2. Macros (Copy Books)

Cobol’s macro mechanism uses copy books and theCOPYstatement. Suppose we need the same structure
or subroutine over and over again in multiple Cobol programs. Instead of copying the source code and
performing some modifications manually, we can store the reused code in a separate file (a copy book)
and call theCOPYstatement to let the Cobol compiler copy the code for us including some adaptations
we might need. Here is the "Hello World!" of copy books:

01 HELLO-CONSTANTS.
05 HELLO-TEXT PIC X(20) VALUE ’Hello World!’.

The text is stored in a file calledhello.cpy (this is for Tine Cobol; different environments might have
different ways to handle copy books). And here is the main program using it.

IDENTIFICATION DIVISION.
PROGRAM-ID. copy-sample.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY hello REPLACING

HELLO-TEXT BY HELLO-MESSAGE
==World== BY ==You==.

77 A PICTURE 99V999.
PROCEDURE DIVISION.

DISPLAY HELLO-MESSAGE.
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STOP RUN.

We reference the copy by its base name (without the.cpy suffix) and perform two replacements.
Identifiers such asHELLO-TEXTcan be replaced directly. The textual replacement inside of the message
string uses== to delimit the original string and its replacement.

Copy books can not only be used for the data division, but for the environment and procedure division as
well. As you can imagine, copy books are a very powerful mechanism to avoid code duplication. They
are used heavily in large Cobol applications.

4.3.3. Subprograms

We have said in the beginning that Cobol does not have the notion of functions with arguments and
return values. However, a similar effect can be achived by calling programs.

To turn a program into a subprogram which can be called by other programs, we have to declare the
arguments of the subprogram in theLINKAGEsection of the data division (right before the procedure
devision so that it looks like a signature for the program).

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X(20).
PROCEDURE DIVISION USING X.

DISPLAY ’X=’, X
MOVE ’We were here!’ TO X
EXIT PROGRAM.

The header of the procedure division contains the "parameter list" in theUSINGclause. Parameters to
subprograms are always in-out parameters (they are passed by reference). The subprogram can read them
and set them to new values. The calling program now calls the subprogram by name specifying which
fields to pass as the arguments to the subprogram.

IDENTIFICATION DIVISION.
PROGRAM-ID. call-sample.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 A PIC X(20) VALUE ’Hello World!’.
PROCEDURE DIVISION.

CALL ’SUBPROG’ USING A
DISPLAY ’A=’, A
STOP RUN.

result:
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X=Hello World!
A=We were here

First, the subprogram prints the original message as passed from the main program. After returning from
the subprogram, the main program prints the message which has been changed by the subprogram.

4.3.4. Sort and Merge

A common task for a batch application is to sort a file consisting of fixed length records with respect to
some key fields. The following example sorts a file with respect to the first two characters of each record
(of 40 characters).

IDENTIFICATION DIVISION.
PROGRAM-ID. sort-sample.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT UNSORTED-FILE ASSIGN TO ’unsorted.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO ’sort.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORTED-FILE ASSIGN TO ’sorted.dat’
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD UNSORTED-FILE LABEL RECORDS ARE STANDARD.
01 UNSORTED-REC PIC X(40).
SD SORT-FILE.
01 SORT-REC.

05 SORT-NO PIC XX.
05 FILLER PIC X(38).

FD SORTED-FILE LABEL RECORDS ARE STANDARD.
01 SORTED-REC PIC X(40).
PROCEDURE DIVISION.
MAIN.

SORT SORT-FILE
ASCENDING KEY SORT-NO
USING UNSORTED-FILE
GIVING SORTED-FILE

STOP RUN.

Three files have to be provided. The original unsorted file, the file for the sorted result, and the sort file
used for intermediate storage. The sort key (here:SORT-NO) has to be defined for the sort file only. For
the unsorted input file and the sorted result, we only specify the length of the record.

In theSORTstatement, the list of sort keys is defined by theKEYclauses specifying eitherASCENDINGor
DESCENDINGsort order. The correct syntax requires the keywordONbefore the first key clause, but Tiny
Cobol does not accept this. If the unsorted input fileunsorted.dat contains the following four records
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20xxxxxxxxxxxfirst recordxxxxxxxxxxxxxxx
10xxxxxxxxxxxsecond recordxxxxxxxxxxxxxx
15xxxxxxxxxxxthird recordxxxxxxxxxxxxxxx
05xxxxxxxxxxxforth recordxxxxxxxxxxxxxxx

the resultsorted.dat will be a nicely sorted file containing the records sorted with respect to the first
two characters.

05xxxxxxxxxxxforth recordxxxxxxxxxxxxxxx
10xxxxxxxxxxxsecond recordxxxxxxxxxxxxxx
15xxxxxxxxxxxthird recordxxxxxxxxxxxxxxx
20xxxxxxxxxxxfirst recordxxxxxxxxxxxxxxx

The sort command provides hooks for input and output. Instead of reading from a file, a subroutine can
be called which fills the sort file. In the following example, the input routine filters out records whose
amount field is zero.

IDENTIFICATION DIVISION.
PROGRAM-ID. sort-sample.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO ’input.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO ’sort.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORTED-FILE ASSIGN TO ’sorted.dat’
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE LABEL RECORDS ARE STANDARD.
01 INPUT-REC.

05 INPUT-TYPE PIC XX.
05 INPUT-AMOUNT PIC 9(8).
05 FILLER PIC X(30).

SD SORT-FILE.
01 SORT-REC.

05 SORT-NO PIC XX.
05 FILLER PIC X(38).

FD SORTED-FILE LABEL RECORDS ARE STANDARD.
01 SORTED-REC PIC X(40).
WORKING-STORAGE SECTION.
77 MORE-RECORDS PIC X(3) VALUE ’YES’.
PROCEDURE DIVISION.
MAIN.

SORT SORT-FILE
ASCENDING KEY SORT-NO
INPUT PROCEDURE READ-INPUT
GIVING SORTED-FILE

STOP RUN.
READ-INPUT.
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OPEN INPUT INPUT-FILE
PERFORM UNTIL MORE-RECORDS = ’NO ’

READ INPUT-FILE
AT END

MOVE ’NO ’ TO MORE-RECORDS
NOT AT END

PERFORM HANDLE-INPUT-RECORD
END-PERFORM
CLOSE INPUT-FILE.

HANDLE-INPUT-RECORD.
IF INPUT-AMOUNT = ZEROS
THEN

CONTINUE
ELSE

MOVE INPUT-REC TO SORT-REC
RELEASE SORT-REC

END-IF.

We have replaced theUSINGclause specifying the input file by the input procedureREAD-INPUT. This
subroutine contains the standard loop reading the input file and callsHANDLE-INPUT-RECORDfor each
record in the input file. This subroutine only copies records with a non-empty amount field to the sort
record and tell the sort input procedure to advance using theRELEASEstatement. TheRELEASE

statement is equivalent to theWRITEstatement used for writing to normal files.

Similarly, we can use the output procedure hook to use our own routine to handle the sorted data instead
of the standard output to a file using theGIVING clause.

IDENTIFICATION DIVISION.
PROGRAM-ID. sort-sample.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT UNSORTED-FILE ASSIGN TO ’unsorted.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO ’sort.dat’
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD UNSORTED-FILE LABEL RECORDS ARE STANDARD.
01 UNSORTED-REC PIC X(40).
SD SORT-FILE.
01 SORT-REC.

05 SORT-NO PIC XX.
05 FILLER PIC X(38).

WORKING-STORAGE SECTION.
77 MORE-RECORDS PIC X(3) VALUE ’YES’.
PROCEDURE DIVISION.
MAIN.

SORT SORT-FILE
ASCENDING KEY SORT-NO
USING UNSORTED-FILE
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OUTPUT PROCEDURE WRITE-OUTPUT
STOP RUN.

WRITE-OUTPUT.
PERFORM UNTIL MORE-RECORDS = ’NO ’

RETURN SORT-FILE
AT END

MOVE ’NO ’ TO MORE-RECORDS
NOT AT END

PERFORM HANDLE-OUTPUT-RECORD
END-PERFORM.

HANDLE-OUTPUT-RECORD.
DISPLAY ’NO=’, SORT-NO.

result:
NO=05
NO=10
NO=15
NO=20

Similar to the input routine which usesRELEASEinstead ofWRITEto write to the special sort file, the
output routine reads a record from the sort file using theRETURNstatement instead of the normalREAD.
Otherwise, the output routine contains the usual read loop. In the example, we just display the sort
number of each record.

Often, we would like to merge two sorted files into one, for example, when applying some updates to a
large master file. Similar to the sort command, Cobol provides a special statement for this task. It works
just like the sort command only that it takes multiple files in theUSINGclause.

IDENTIFICATION DIVISION.
PROGRAM-ID. sort-sample.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE-1 ASSIGN TO ’input1.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT INPUT-FILE-2 ASSIGN TO ’input2.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO ’sort.dat’
ORGANIZATION IS LINE SEQUENTIAL.

SELECT MERGED-FILE ASSIGN TO ’merged.dat’
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE-1 LABEL RECORDS ARE STANDARD.
01 INPUT-REC PIC X(40).
FD INPUT-FILE-2 LABEL RECORDS ARE STANDARD.
01 INPUT-REC PIC X(40).
SD SORT-FILE.
01 SORT-REC.

05 SORT-NO PIC XX.
05 FILLER PIC X(38).
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FD MERGED-FILE LABEL RECORDS ARE STANDARD.
01 MERGED-REC PIC X(40).
PROCEDURE DIVISION.
MAIN.

SORT SORT-FILE
ASCENDING KEY SORT-NO
USING INPUT-FILE-1, INPUT-FILE-2
GIVING MERGED-FILE

STOP RUN.

Merging the "master" fileinput1.dat containing the four records

10xxxxxx input1 record 1 xxxxxxxxxxxxxxx
20xxxxxx input1 record 2 xxxxxxxxxxxxxxx
30xxxxxx input1 record 3 xxxxxxxxxxxxxxx
40xxxxxx input1 record 4xxxxxxxxxxxxxxxx

with the "update" fileinput2.dat containing the two records

05xxxxxx input2 record 1 xxxxxxxxxxxxxxx
25xxxxxx input2 record 4 xxxxxxxxxxxxxxx

results in the new sorted filemerged.dat .

05xxxxxx input2 record 1 xxxxxxxxxxxxxxx
10xxxxxx input1 record 1 xxxxxxxxxxxxxxx
20xxxxxx input1 record 2 xxxxxxxxxxxxxxx
25xxxxxx input2 record 4 xxxxxxxxxxxxxxx
30xxxxxx input1 record 3 xxxxxxxxxxxxxxx
40xxxxxx input1 record 4xxxxxxxxxxxxxxxx

4.3.5. Screen Definitions

The interactive input and output we have used so far is very limited: we display some message with the
DISPLAY statement and ask for a single variable withACCEPT. These statements can also be used to
define much more sophisticated dialogs (not quite what we consider graphical user interfaces these days,
but the kind of terminal screen you typically see in banks). Instead of a single variable, you provide the
name of a complete screen defined in the screen section of the data division. Here is the interactive
demonstration of the case statement using a screen definition.

IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 RESULT PICTURE X(10) VALUE SPACES.
77 INPUT-VALUE PICTURE 99 VALUE 0.
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SCREEN SECTION.
01 INPUT-SCREEN.

05 BLANK SCREEN.
05 LINE 1 COLUMN 1 VALUE ’RESULT:’.
05 COLUMN 12 PIC X(10) FROM RESULT.
05 LINE 2 COLUMN 1 VALUE ’INPUT:’.
05 COLUMN 8 PIC 99 TO INPUT-VALUE.

PROCEDURE DIVISION.
MAIN.

PERFORM UNTIL INPUT-VALUE = 99
DISPLAY INPUT-SCREEN
ACCEPT INPUT-SCREEN
EVALUATE INPUT-VALUE

WHEN 1
MOVE ’ONE’ TO RESULT

WHEN 2
MOVE ’TWO’ TO RESULT

WHEN 3
MOVE ’THREE’ TO RESULT

WHEN OTHER
MOVE ’MORE’ TO RESULT

END-EVALUATE
END-PERFORM
STOP RUN.

When running the program, you will see an empty black screen showing the previous result (blank after
startup) and asking for the new input value. The whole "look-and-feel" is defined in the screen section.

4.4. Libraries and Common Examples

Bibliography

I’m not a Cobol expert, but considering the number of copies I found in American bookstores, Stern &
Stern[STERN00]> seems to bethebook used to teach Cobol. It is indeed a very readable introduction to
Cobol.

Nancy B. Stern and Robert A. Stern, 0-471-31881-7, John Wiley and Sons, 2000,Structured Cobol
Programming: For the Year 2000 and Beyond.
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C was created by Dennis Richie and Kenneth Thompson at Bell Labs during the early 1970’s as the
system programming language for the UNIX operating system. Like Lisp and Scheme, C went through a
standardization process during the 1980’s leading to the ANSI/ISO standard in 1989 known as ANSI-C.
It contains major improvements over the original language, in particular function prototypes (adopted
from C++). A new version of the standard known as C99 has been published, guess, 1999. It includes,
for example, wide character support. The following description uses ANSI-C as of 1989.

This short review of the C languages focuses on the features we will need when discussing the other
programming languages in the following chapters. Readers who are familiar with the C language may
quickly browse this chapter or skip it entirely.

5.1. Software and Installation

The examples in this chapter use the GNU C compiler which is available on almost any operating
system. To enforce ANSI compliance we set the-ansi switch.

5.2. Quick Tour

C is a compiled language without an interpreter which would allow us to explore the language
interactively. Instead we have to go through the usual edit-compile-run loop. The code is placed into files
with the suffix.c or .h (header files for declarations shared by multiple programs, see below).

5.2.1. Hello World

#include <stdio.h>

main() {
printf("Hello World");

}

Compared to the simpleprint "Hello World" we have seen so far, we need to understand a number
of language features to implement our favorite message in C: libraries, preprocessor instructions,
statement blocks, functions, and the entry pointmain .

Let’s start with C’s module structure. The core language is rather small and contains just the bare
minimum to define functions and structures. Everything else, from input and output to memory
management and string processing is defined in libraries. We will use only a few standard libraries, the
most important one beingstdio which allows us to show the results of our programs.
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Thestdio library contains the functionprintf for formatted output. It is declared in the header file
stdio.h . To use theprintf function, we have to include this header file using the preprocessor
directive#include . The translation of our little program happens in two steps. First, the C preprocessor
executes all the preprocessor commands (starting with a hash character) and expands the macros (defined
with #define , seeSection 5.2.6>). The result is plain C code without any preprocessor instructions or
macros. If you want to see the generated code, you can run the preprocessorcpp directly. In case of the
#include directive, the included file is copied into the generated code. The process is recursive, that is,
the included file is actually processed by the preprocessor before inserting it into the code.

The remaining part of the program defines the functionmain . The function definition consists of the
name of the function followed by the empty argument list() and a block of statements enclosed in the
characteristic curly braces. Each statement ends with a semicolon. The call of theprintf function looks
just like a mathematical function call. Like in many other languages, String constants are enclosed in
double quotes.

The compiler takes the preprocessed C code and turns it into machine code. This machine code contains
a table declaring the data and functions used and defined by the code (the symbol table which you can
display on UNIX systems using thenmcommand). When executing this code, the operating system looks
for a function calledmain and calls it.

Themain function as shown above is actually a shortcut. The "correct" version would define the return
type in front of the function name and actually return a value.

#include <stdio.h>

int main() {
printf("Hello World");
return 0;

}

Since this is the default behavior of a function in C, we can omit both, the return typeint and the
return statement. In the following examples, we will omit the scaffolding and just list the main
function followed by the result printed on the screen.

Simple arithmetic uses the familiar mathematical infix notation.

main() {
printf("result=%d\n", 3+4*5);
printf("result=%f\n", 1.5 * 2 + 3.5);

}

result=23
result=6.500000

Here we use the formatting capabilities of theprintf function which work just like Python’s formatting
operator (or better the other way round, since Python’s formatting was derived from C’s). C support a
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large number of arithmetic operators including bit operations and update shortcut operators such as+=

and++ (equivalent to+=1). A very useful operator is the conditional expression (the one feature we miss
the most in Python - it is going to be added soon). It is a ternary expression which corresponds to theif

expression in functional languages and uses a question mark after the condition followed by the two
alternatives separated by a colon.

int abs(int i) { return i<0? -i : i; }

main() {
printf("result=%d\n", abs(-55));
printf("result=%d\n", abs(55));

}

result=55
result=55

5.2.2. Control Flow

C provides the conditional and loop statements known from procedural languages such asif/else and
do/while .

main() {
int i;

if (1 < 2) {
printf("yes\n");

}
else {

printf("no\n");
}

i = 0;
while (i<3) {

printf("i=%d\n", i);
i += 1;

}

do {
i -= 1;
printf("i=%d\n", i);

} while (i>0);
}

yes
i=0
i=1
i=2
i=2
i=1
i=0
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This example already introduces an integer variablei with a type declaration which we will cover in the
next section in more detail. The most useful control statement is thefor loop. It consists of four parts:
initialization, test, update, and a statement. The initialization statement is executed before entering the
loop, the test is performed before every iteration, and the update after every iteration. The statement,
which is typically a block of statements is executed in between. If the test fails, the loop is left. The loop
every C programmer has entered about a million times walks through the integers between zero and
some upper bound:

main() {
int i;
for (i=0; i<5; i++) {

printf("i=%d\n", i);
}

}

5.2.3. Basic Types

To me, the key to understanding C is the type system in general and pointers and type declarations in
particular. Once you can read a declaration such as the following one of thesignal function without
blinking twice, there is hardly anything that can stop you in C.

void (*signal(int sig, void(* func)(int)))(int);

Before dissecting this declaration, let’s start with the basics. C is a statically typed language with explicit
type declarations. In contrast to dynamically typed languages, the type information is attached to
variables rather than values. In C, the programmer has to use type declarations to tell the compiler that a
variable or function is of a certain type. As we will see in the chapters about ML and Haskell, there are
languages which leave most of this burden to the compiler using implicit types and type inference.

The following example introduces a simple integer function and uses it in the main function.

int times2(int x) { return 2*x; }

main() {
int n = 5;
double result;
result = times2(n);
printf("result=%f\n", result);

}

result=10.000000

In the simple cases, a C type declaration is put in front of the associated variable or function (for the
return type). In themain function we introduce two local variables, the integer variablen and the floating
point variableresult . In C, local variables must be declared at the beginning of a block (in the newer
members of the C family such as C++, Java, and C#, this rule was dropped and you can declare variables
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where they are used for the first time). In reality, most C programmers declare local variables at the
beginning of a function. As you can see, variables can be initialized as part of the declaration. The
example also shows that C converts between types automatically whenever it makes sense, for example,
from integer to double, but not vice versa. In other words, type conversion if performed automatically if
no information is lost. We can also force a type conversion by putting the required type in parentheses in
front of the value, an operation known as casting.

main() {
double x = 5.5;
int n = (int)x;
printf("n=%d", n);

}

n=5

The next example shows the first deviation from the rule that type declarations are always put in front.

static void squares(int a[], int n) {
int i;
for (i=0; i<n; i++) {

a[i] = i*i;
}

}

main() {
int i;
int a[5];

squares(a, 5);
for (i=0; i<5; i++) {

printf("square(%d)=%d", i, a[i]);
}

}

One of C’s (few) built-in data structures are arrays. An array contains a fixed number of values of the
same type. The type declaration uses the same syntax as array access, that is, the index operator (square
brackets). The array part of the type declaration is put behind the variable in questions. When used to
access the array, the square brackets contain the zero-based index (to be interpreted as an "offset"), and
when used in a type declaration they contain the size of the array. If the size of the array is not known (as
for the argumenta to thesquares function), the square brackets are left empty.

The example also give a first glimpse at the dangers of C. The array does not contain information about
its size, and there is no boundary checking when accessing array elements. The application has to make
sure that the arrays are used properly, or otherwise it will experience one of the infamous buffer overflow
bugs. That’s why we have to pass the length of the array explicitly to thesquares function. We can
make our example a little bit safer by defining a constant for the size of the array.

main() {
const int n = 5;
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int i, a[n];

squares(a, n);
for (i=0; i<n; i++) {

printf("square(%d)=%d\n", i, a[i]);
}

}

This shows another type feature introduced with the ANSI standardization of C: constants which are
declared by preceding the type with theconst qualifier.

Since arrays may contain arbitrary types, we can define multidimensional arrays as arrays of arrays as in
the next example.

main() {
const int m = 2;
const int n = 3;
double a[m][n];

a[1][2] = 55;
printf("x=%d", a[1][2]);

}

The variablea is a matrix of two rows and three columns. The six elements are stored in memory as one
block of six integers, and the array access is implemented by computing the offset as row index times
column size plus column index. Obviously, this approach generalizes to arrays of dimension greater than
two.

As you can tell we are moving closer and closer to the machine level. The next topic takes us directly to
the computer memory. C’s pointers are nothing but addresses in (nowadays typically virtual) memory,
and C gives the developer a lot of freedom to manipulate pointers and use them in creative manners.
What the index operator[] is for arrays, the asterisk* is for pointers. In type declarations, an asterisk
preceding an expression indicates a pointer, and in statements the same operator retrieve the value the
pointer is pointing to (that is, the contents of the memory at the address contained in the pointer). The
ampersand& does the opposite by returning the address of a variable as a pointer.

main() {
int n = 5;
int *np = &n;

*np = 10;
printf("n=%d", n);

}

n=10

What makes things interesting is that you can calculate with pointers. As an example, we can access the
elements of an array using pointer calculations.

53



Chapter 5. C

main() {
int a[5];
int *ap = &a[0];

a[2] = 1;
printf("a[2]=%d\n", a[2]);
*(ap + 2) = 2;
printf("a[2]=%d\n", a[2]);
ap[2] = 3;
printf("a[2]=%d\n", a[2]);

}

a[2]=1
a[2]=2
a[2]=3

The example shows three different ways to access an element of an array. First, we let the pointerap

point to the first element of the array. The first assignment uses the standard array index operator. The
second one,*(ap + 2) = 2 uses pointer arithmetic. We add the offset 2 to the pointer resulting in a
pointer to the third element of the array. Using the asterisk, we access the value of this element and set it
to two. The last assignment,a[2] = 3 demonstrated C’s shortcut syntax for the same expression: For a
pointerp, the expressionp[i] is equivalent to*(p+i) . Note that the pointer arithmetic takes the size of
the underlying type (here integer) into account. At least, we don’t have to compute the addresses in bytes.

Pointers are essential when dealing with dynamic data structures, for examples, arrays whose size is not
known at compile time. The memory for these structures has to be allocated at run time (on the heap) and
given back to the operating system once the memory is not used any more. Using C, those tasks are the
responsibility of the programmer. New memory is allocated with themalloc function (and its siblings)
and deallocated withfree .

#include <stdio.h>
#include <malloc.h>

main() {
const int n = 5;
int* a = malloc(n * sizeof(int));
a[2] = 55;
printf("a[2]=", a[2]);
free(a);

}

a[2]=55

Themalloc function takes the number of bytes to be allocated and returns a generic pointer (of type
void* ). We therefore have to compute the actual size of our integer array in bytes using thesizeof

function. The resulting pointer to the memory block allocated by themalloc function is automatically
converted to an integer pointer.
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With all the knowledge about arrays and pointers we can revisit strings. The standard strings in C are
null-terminated arrays of 8-bit characters.

5.2.4. Structures and Type Definitions

Besides the basics types, arrays, and pointers, C allows you to define you own structures. A structure
combines a fixed number of named fields.

main() {
struct { const char* name; int age; } person;

person.name = "Homer";
person.age = 55;

printf("person=%s, %d", person.name, person.age);
}
person=Homer, 55

The fields of structures are declared just like local variables of a functions. Like arrays, structures are
static in the sense that the size and memory layout is completely determined at compile time. The fields
of a structure are accessed using the dot notation. We can give the structure definition a name for reuse.
In the following example, we use the named structure to define a pointer to theperson .

main() {
struct PERSON { const char* name; int age; } person;
struct PERSON* person_ptr = &person;

person.name = "Homer";
person.age = 55;

printf("person=%s, %d", person.name, person.age);
(*person_ptr).name = "Bart";
person_ptr->age = 10;
printf("person=%s, %d", person.name, person.age);

}

person=Homer, 55
person=Bart, 10

As you can see, C provides the arrow operator-> as a shortcut for the dereference operator* combined
with the field access.

When dealing with complex types such as structures, it is useful to give the type a new name using C’s
type definitions. A type definition looks like a variable definition preceded by the keywordtypedef . The
variable name become the name of the new type. This makes the previous example much more readable.

typedef struct {
const char* name;
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int age;
} Person;

main() {
Person person;
Person *person_ptr = &person;

...
}

With this concept we can start to define a number of functions manipulatingPerson structures.

void Person_print(Person* person) {
printf("name=%s, age=%d", person->name, person->age);

}

Note that just the pointer is passed to function instead of copying the whole structure.

5.2.5. Functions

We have already used the basic syntax of function definitions in the previous sections. Functions are
defined with their return type followed by the function name, the argument list, and a block of
statements. A function can have local variables which must be declared at the beginning of the block. In
contrast to other precedural languages (e.g., the Pascal family), function definitions can not be nested. In
other words, functions live in a single global scope. However, we can hide a definition of global variables
and functions inside a file using thestatic keyword.

static n = 5;
static int timesN(int x) { return n*x; }

Preceding a definition withstatic prevents the compiler from adding the symbols to the symbol table
so that the associated variables and functions can not be seen by another module. As a rule, define all
objects static unless they are used by other modules. (This is a UNIX-centric presentation of the situation.
On Windows, one has to explicitly export definitions in order to make them available in other modules.)

C supports recursive functions as well.

static int fac(int n) { return n<2? 1 : n*fac(n-1); }
main() {

printf("fac(5)=%d", fac(5));
}

120
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You can call a function before it is defined by using a function declaration (this is essential for defining
mutually recursive functions). These declarations are basically function definitions without the statement
block. Like other declarations they end with a semicolon.

static int fac(int n);

main() {
printf("fac(5)=%d", fac(5));

}

static int fac(int n) { return n<2? 1 : n*fac(n-1); }

120

Without the forward declaration, this code would have lead to an error. The C compiler reads and
translates the file sequentially (leading to fast compilers). Function declarations are also the main means
to share information between multiple compilation units. The header files such asstdio.h contain just
the declarations of the exported functions. The associated compiled function definitions of the standard
I/O library are contained in the system library and linked to the executable during linking.

We have seen functions of elementary types and structures, but does C support higher order functions? Is
it possible to define a function likemapwhich applies another function to all elements, say, in an array?
In other words, can we pass a function as an argument to another function? As you might have guessed
by now, the typical answer in C involves pointers, in this case, function pointers. But how do we define a
function pointer type? The syntax follows the symmetry between the declaration of a variable and the
declaration of the corresponding type. In case of a function, we take the function declaration, e.g.,int

f(int i) , replace the function name by the type name, and make it a pointer by preceding the name
with an asterisk. All that’s missing for our function pointer type definition is thetypedef keyword and
parentheses around the asterisk and the name to prevent C’s preference rules from binding the asterisk to
the int return type.

typedef int (*IntMap)(int i);

void map(IntMap f, int a[], int b[], int n) {
int i;
for (i=0; i<n; ++i) {

b[i] = f(a[i]);
}

}

static int times2(int i) { return 2*i; }

main() {
const int n = 5;
int i, a[n], b[n];

for (i=0; i<n; i++) a[i] = i;
map(times2, a, b, n);
for (i=0; i<n; i++) {

printf("b[%d]=%d\n", i, b[i]);
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}
}

b[0]=0
b[1]=2
b[2]=4
b[3]=6
b[4]=8

Note that the functiontimes2 is passed to themap function just using the function’s name. You may
have thought that the name has to be preceded by an ampersand to turn the function into a function
pointer, but the syntax makes sense since the parentheses required when calling a function clearly
distinguish a function call from the function itself.

It is not surprising that C ows much of its flexibility to function pointers. They can be used in any other
data structures such as arrays and structures. Functions can also return function pointers, which leads us
to the explanation of thesignal function.

void (*signal(int sig, void(* func)(int)))(int);

The definition becomes are lot more readable by introducing a type definition for signal handlers which
are pointers to functions taking a single integer argument (the signal number) and returning nothing.

typedef void (*SignalHandler)(int signal);

With this definition, thesignal function looks like this:

SignalHandler signal(int signal, SignalHandler handler);

Thesignal function is used to bind a signal handler to a signal. It returns the old signal handler so that
the application can keep it in mind and restore the old situation if necessary.

We finish this section with a slightly longer example showing one tiny step towards the implementation
of object oriented features in C. It demonstrates how structures and function pointers can be used to
implement polymorphism.

typedef void (*PrintFunction)(void* object);

typedef struct {
PrintFunction print;

} Class;

typedef struct {
Class *class;

} Object;

static void print(void* o) {
Object* object = (Object*)o;
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object->class->print(object);
}

/* Cat */

typedef struct {
Class* class;
const char* name;

} Cat;

static void Cat_print(void* p) {
Cat* cat = (Cat*)p;
printf("Miouw, I’m a cat, my name is %s", cat->name);

}

static Class Cat_class = { Cat_print };

static Cat* Cat_new(const char* name) {
Cat* cat = (Cat*)malloc(sizeof(Cat));
cat->class = &Cat_class;
cat->name = name;
return cat;

}

/* Dog */

typedef struct {
Class* class;
const char* name;
const char* breed;

} Dog;

static void Dog_print(void* p) {
Dog* dog = (Dog*)p;
printf("Wouff, I’m a %s, my name is %s", dog->breed, dog->name);

}

static Class Dog_class = { Dog_print };

static Dog* Dog_new(const char* name, const char* breed) {
Dog* dog = (Dog*)malloc(sizeof(Dog));
dog->class = &Dog_class;
dog->name = name;
dog->breed = breed;
return dog;

}

main() {
Cat* cat = Cat_new("Felix");
Dog* dog = Dog_new("Alex", "Terrier");

print(cat);
print(dog);
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free(dog);
free(cat);

}

Miouw, I’m a cat, my name is Felix.
Wouff, I’m a Terrier, my name is Alex.

How does it work? Objects as well as their classes are represented as structures. The object structures
have a pointer to their associated class structure as the first field. The class structure contains a pointer to
a print function. Note that there is a lot of casting going on which can have desastrous effects if the
structure does no look like expected. This admittedly oversimplified example is not so far from the actual
implementation of object oriented extensions of C such as C++ and Objective C which hide all the
casting and additional pointers from the developer. C++ does not use a pointer to a class structure, but to
an array of function pointers (the virtual method table).

5.2.6. Macros

Since a programming language is hardly ever complete, its success often depends on the ability to extend
the language with means of the language itself (rather than writing a new compiler). For C, this ability is
provided by the preprocessor. We have used it from the very beginning to include the declarations of the
standard I/O library. Besides merging other files into the source code, the preprocessor has two more
main tasks: macros and conditional compilation. Macros allow you to substitute arbitrary text for
symbols used in the code.

#define HELLO printf("Hello World")

main() {
HELLO;

}

Some symbols such as the current file name (__FILE__ ) and line number (__LINE__ ) are predefined.

#include <stdio.h>

main() {
printf("file=%s, line=%d", __FILE__, __LINE__);

}

file=sample.c, line=4

They are very handy when defining diagnostic messages, and, since the macro definitions are resolved at
compile time, come at no cost. Macros can also have arguments which are substituted verbatim into the
macro expansion.

#include <stdio.h>
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#define LOG(message) printf("%s:%d %s", __FILE__, __LINE__, message)

main() {
LOG("here we are");

}

sample.c:6 here we are

The macro syntax uses white space to separate the macro declaration (here:LOG(message) ) from the
definition which is read until the end of the line. If you want to define macros spanning multiple lines,
you need to end all but the last line with a backslash as C’s continuation character.

Other typical examples are small generic functions. Since C’s function symbols are unique (no
overloading), macros are the only way to define a "function" for multiple types.

#define MAX(a, b) (((a)>(b))? (a) : (b))

main() {
int n = 50;
double x = 1.23;
printf("MAX(n + 5, 10)=%d\n", MAX(n + 5, 10));
printf("MAX(x, 10)=%f\n", MAX(x, 10));

}

MAX(n, 10)=50
MAX(x, 10)=10.000000

Note that the macro calls look like function calls, but they are not. Instead the macro expression is pasted
into the code. In contrast to functions, the arguments are not computed once and passed by value. The
argument expressions are substituted literally for the placeholders in the macro definition. That’s why we
put parentheses around the arguments in the macro definition. Hence,MAX(n+5,10) will be replaced by
the expression(((n+5)>(10))? (n+5) : (10)) . Another example is the SWAP macro which swaps
the values of two variables.

#define SWAP(T, a, b) { T tmp=a; a=b; b=tmp; }

main() {
int x=5, y=10;
SWAP(int, x, y);
printf("x=%d, y=%d", x, y);

}

x=10, y=5

Here, we need to pass the type so that the macro can declare the temporary variabletmp . Originally,
macros were also used to define constants, but with the introduction of proper typed constants in ANSI C
this is not necessary anymore. So, instead of macro

#define PI 3.1415926535897931
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better use the constant:

static const double PI = 3.1415926535897931;

We won’t cover conditional compilation in this short chapter apart from saying that it is mainly used to
adapt the source code to the different environments, hardware, and operating systems.

References
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Alan Key created Smalltalk ("programming should be a matter of smalltalk") in 1971 at the famous
Xerox Palo Alto Research Center (PARC). The Smalltalk implementation went through several releases
before being made available outside Xerox Parc in 1980 (Smalltalk-80). Several commercial Smalltalk
systems were developed during the next two decades, the most successful ones by Parc Place (Xerox’s
Smalltalk spinoff) IBM. Although considered a very productive development environment by many,
Smalltalk never caught on as expected. One reason (besides the price tag of the commercial
implementations) is probably the lack of a standard which means that Smalltalk programs can not be
easily ported from one Smalltalk implementation to another. The advent of Java (and later C#) further
dimished Smalltalk’s market share.

6.1. Software and Installation

We use GNU Smalltalk (gst) as the test implementation. For the UNIX people, it is just the
configure/make procedure using the latest version (at the time of this writing 2.0.11) of GNU Smalltalk
downloaded from ftp.gnu.org/smalltalk. On Windows I’ve used cygwin, but couldn’t compile the new
version successfully. For the examples, I’m now using the last 1.x version, namely 1.95.12. For a
successful compile I had to remove the tcp and example targets from the Makefile. Starting the gst
command line application without options will give you plenty of diagnostics for each executed
statement. It get quieter with the "-q" option (or even "-Q").

$ ./gst.exe -q
GNU Smalltalk Ready

st>

6.2. Quick Tour

6.2.1. Message Passing

The key to understanding Smalltalk is not its syntax (which is very small), but its concept. Smalltalk is
pure object-orientation. Everything is an object: integers, strings, other instances of classes, the classes
themselves, and even blocks of code. The only way to accomplish something in Smalltalk is to let these
objects send messages to each other. Messages are sent to objects by writing the name of the message
(the message selector) behind the object the message is sent to.

st> ’Hello World’ printNl !
’Hello World’
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What does this example tell us? First, Smalltalk strings are enclosed in single quotes. Double quotes are
used for comments. Second, strings seem to understand the printNl and print themselves including the
quotes. And finally, as GNU Smalltalk specialty, statements are finished with an exclamation mark (most
other implementations use a period). Something you will appreciate about Smalltalk is its consistency.
The message printNl is understood by any object, and, as we said in the beginning, everything is an
object, even "primitive" types.

st> 1234 printNl !
1234
st> 1.234 printNl !
1.234

For printing object the message passing might make sense, but how is this supposed to work for, say, an
expression such as "4 + 5"?

st> (4 + 5) printNl !
9
st> (2 + 3 * 4) printNl !
20
st> (2 + (3 * 4)) printNl !
14
st> (5 negated) printNl !
-5

The expression looks like a normal arithmetical expression, but behind the scenes Smalltalk interprets
the first expression as the message "add 5" sent to the object "4". The second expression first sends the
message "add 3" to the number "2". The resulting object "5" is then told to "multiply with 4". Message
passing is simple evaluated from left to right, and you have to take care of the preference rules yourself.
As a prefix operator, the minus sign does not fit into the message passing concept. Instead you need to
send the "negated" message to a number to achieve the same effect.

The arithmetical operators are special because messages with arguments normally have method selectors
ending with a colon. For example, sending the message "to: 10" to an integer n creates the interval from
n to 10 (including, no half open interval semantics like in Python).

st> (1 to: 10) printNl !
Interval(1 2 ... 10)
st> ((1 to: 10) at: 2) printNl !
2

And for any sequence object, the message "at:" followed by an index n gives us the n’th element
(counting from 1 unlike the languages influenced by C).

To make things more interesting, we have to introduce a variable in the environment of the Smalltalk
interpreter.

st> Smalltalk at: #x put: 0 !
st> x printNl !
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0
st> x := ’Hello’ !
st> x printNl !
’Hello’

Don’t worry about the strange name "#x". It is just the name "x", but considered a unique symbol (in
contract to strings which allow multiple objects to have the same value ’x’). One the variable exists, we
can assign to it using the assignment operator ":=". Variables are not bound to a type. Like in Python, a
variable can first contain an integer and later be changed to a string (or any other object).

At this point we still wonder if the wonderful world of message passing makes live easier or harder. Just
consider control statements such as if clauses and loops. To see how those can expressed quite elegantly,
we first have to introduce another important feature which has not made it in many languages (Ruby
being one of the notable exceptions): code blocks. A code block in Smalltalk is just a sequence of
statements in square brackets. Code block are objects (surprise) and the most important message they
understand is "value" which evaluates the code.

st> x := [’Hello’ printNl] !
st> x value !
’Hello’

Since code blocks are objects, we can assign them to variables, pass them as arguments of messages,
store them in collections, and so forth. Now you might guess how message passing can be used to
implement control statements: The control commands become messages and the actions are passed as
code blocks.

st> (2 < 3) ifTrue: x !
’Hello’
st> (2 > 3) ifTrue: x ifFalse: [ ’Ok’ printNl ] !
’Ok’
st> 5 timesRepeat: x !
’Hello’
’Hello’
’Hello’
’Hello’
’Hello’

For iterations we need blocks with arguments. They are listed as identifiers, each preceded by a colon,
and separated from the block’s statements by a vertical bar.

st> x := [ :i | i printNl ] !
st> x value: 15 !
15
st> y := [ :i :j | (i*j) printNl ] !
st> y value: 2 value: 3 !
6
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Blocks with multiple arguments respond to the value message with multiple value arguments. Code
blocks can be viewed as anonymous procedures. They can become arbitrarily complex with multiple
statements being separated by periods. You can even use local variables which have to be declared within
a pair of vertical bars.

st> x := [ :i |
st> | k |
st> k := 5 * i.
st> ’k=’ display.
st> k printNl.
st> (i > 5) ifTrue: [ ’big number’ printNl ]
st> ] !
st> x value: 10 !
k=50
’big number’
st> x value: 3 !
k=15

The definition of "x" can be interpreted as the definition of a procedure similar do the following Python
code.

>>> def x(i):
k = 5 * i
print "k=%d" % k
if i > 5: print "big number"

>>> x(10)
k=50
big number
>>> x(3)
k=15

Like Smalltalk, Python allows to treat functions as objects, but it does not allow arbitrary anonymous
functions (only lambda expression). On the other hand, Smalltalk’s code blocks can not return values.

6.2.2. Collections

Now we are all set for collections and iterations. Kent Beck[BECK97]> devotes them a whole chapter in
his highly recommended Smalltalk patterns book. The available methods are powerful enough to prevent
you from using any explicit loop. The first example is the equivalent for a simple "for" loop (like in
Pascal, not C’s generalized version):

st> 1 to: 5 do: x !
1
2
3
4
5
st> 1 to: 6 by: 2 do: [:x | x printNl ] !
1
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3
5
st> 3 to: 1 by: -1 do: [:x | x printNl ] !
3
2
1

How is the first statement to be read? We already know that sending the "to: 5" message to the integer
object "1" creates the interval from one to five. Intervals respond (like all collections) to the message
"do:" with a code block as an argument. When receiving this message, the interval iterates through itself
and calls the block with the current value of the iterator. The second and third statement extends this kind
of loop by adding a step argument (2 and -1, respectively). Here is a more interesting example:

st> y := Set new !
st> y isEmpty printNl !
true
st> y add: ’a’; add: ’b’; add: ’c’ !
st> y printNl !
Set (’a’ ’b’ ’c’ )
st> y do: x !
’a’
’b’
’c’
st> (y includes: ’a’) printNl !
true
st> (y includes: ’q’) printNl !
false
st> y remove: ’b’ !
st> (y includes: ’b’) printNl !
false

We create a set by sending the "new" message to the Set class (more on this below) and add three strings
to the set. Note the shortcut notation when sending messages to the same object. Instead of repeating the
object we can chain the messages separated by semicolons. The loop (do: ) works exactly as in the
previous example. The remaining statements demonstrate some more messages of sets.

All Smalltalk environments contain a rich set of collection classes including sets, lists, bags, ordered
lists, arrays, and dictionaries. They all adhere to the same basic protocol which makes it easy to keep
their usage patterns in mind.

st> Smalltalk at: #l put: (OrderedCollection new) !
st> l add: ’Joe’; add: ’John’; add: ’Mary’ !
st> l do: [:each | each displayNl ] !
Joe
John
Mary
st> (l at: 2) printNl !
’John’
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The "map" operation creating a new collection by applying a function to every element in the original
collection corresponds to Smalltalk’s "collect" message.

st> (l collect: [ :each | ’my name is ’, each]) printNl !
OrderedCollection (’my name is Joe’

’my name is John’
’my name is Mary’ )

If the equivalent of the "map" function exists, we also expect "filter" and "reduce". Filtering comes in
two flavors, selection and rejection.

st> ((1 to: 10) select: [:each | each > 5]) printNl !
(6 7 8 9 10 )
st> ((1 to: 10) reject: [:each | each > 5]) printNl !
(1 2 3 4 5 )

Of course, rejection can be easily expressed using selection and negation (and vice versa), but having
both helps to convey the intention of the program. The equivalent of "reduce" has an unusual selector
"inject:into:", but otherwise behaves as expected.

st> ((1 to: 4) inject: 5 into: [:sum :each | sum + each]) printNl !
15

A bag is an unordered collection which, in contrast to a set, allows for duplicates.

st> y := Bag new !
st> y add: ’a’; add: ’b’; add: ’b’; add: ’c’ !
st> y size printNl !
4
st> y do: [:i | i printNl] !
’a’
’b’
’b’
’c’
st> (y includes: ’b’) printNl !
true
st> (y occurrencesOf: ’a’) printNl !
1
st> (y occurrencesOf: ’b’) printNl !
2
st> y asSet printNl !
Set (’a’ ’b’ ’c’ )

We have used the global dictionary "Smalltalk" already to introduce global variables. Here are a few
more messages including the iteration over the key-value pairs (equivalent to Java’s Map.Entry).

st> y := Dictionary new !
st> y at: ’a’ put: 1; at: ’b’ put: 2 !
st> y printNl !
Dictionary (
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’a’->1
’b’->2

)
st> (y at: ’a’) printNl !
1
st> (y includesKey: ’a’) printNl !
true
st> y associationsDo: [ :each |

’key=’ display.
each key display.
’, value=’ display.
each value displayNl

] !
key=a, value=1
key=b, value=2

Smalltalk also has something like a tuple, the Array. It is a read-only, fixed length collection, just like
Python’s tuple, and even has a built-in syntax.

st> Smalltalk at: #x put: #(1 2 3)
st> x inspect !
An instance of Array

contents: [
[1]: 1
[2]: 2
[3]: 3

]

6.2.3. Objects and Classes

Having covered the basics of Smalltalk syntax, it is now time to move to the heart of Smalltalk: objects
and classes. It should be no surprise anymore that Smalltalk does not have any special syntax for class
definitions, but relies on talking to existing classes to create new ones.

st> Object subclass: #Person
instanceVariableNames: ’name age’
classVariableNames: ”
poolDictionaries: ” !

st> Person new printNl !
a Person

Here we create a new class called "Person" derived from Object with two attributes (or instance
variables) "name" and "age". In Smalltalk speak, we tell the class object "Object" to create a subclass
with the symbol #Person, and as part of the message we give Object the lists of instance variables names,
class variable names, and poolDictionaries (which we won’t cover here). As you can see, we can already
create instances of our new class, but that’s about all. We have no access to the attributes, not any
Person-specific methods to call. As a next step, we can give the new class a description.
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st> Person comment: ’I am representing persons with name and age’ !
st> Person comment printNl !
’I am representing persons with name and age’

The first statement set the comment using the "comment:" message, and the second one reads the
comment using the "common" message and prints it. To do the same with the name of a person, we have
to define our first own methods.

st> !Person methodsFor: ’setters’!
st> name: aName
st> name := aName
st> !!
st> !Person methodsFor: ’getters’!
st> name
st> ^name
st> !!
st> x := Person new !
st> x name: ’Homer’ !
st> x name printNl !
’Homer’

The notation with the exclamation marks is GNU Smalltalk specific. Normally, you create methods in a
class browser where you enter the name and code in separate text fields. The argument to methodsFor is
the so-called protocol the new method should belong to. Protocols are just groups of related methods.
Following the protocol we find the signature of the method: the message name (or selector), and
optionally the list of arguments with their names. The rest of the method definition is a sequence of
statements, the body of the method. Values are returned using the caret operator. Within methods, you
have access to the instance variables and to the two special variables "self" (the instance itself) and super
(which we will demonstrate later).

Going through the definition of the method, there is nothing that prevents us from adding a method to an
existing class. That’s how we defined the methods for the Person class one after the other. As an example,
we can teach every object how to say hello to the world by adding such a method to the base class Object.

st> !Object methodsFor: ’fun’
st> !
st> hello
st> ’Hello World’ printNl
st> !!
st> 5 hello !
’Hello World’

As you can imagine this opens the door for all kinds of uses (and abuses). An application can easily
extend the base library. In Java applications you often find collections of utility classes containing static
methods which provide additional functionality for existing objects. In Smalltalk, you would add this
behaviour directly where it belongs.
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Also notice that Smalltalk does not have private methods. Methods are always public and attributes are
always private. If you want to mark methods as private you have to resort to some naming scheme (e.g.,
myDoSomething).

6.3. More Features

The quick tour covered most of Smalltalk’s structure, but touched only the surface of object oriented
programming in Smalltalk and the existing class libraries.

6.3.1. An Object-Oriented Example

After what we’ve seen, Smalltalk seems like an interesting alternative to other programming languages
with message passing as a unique consistent approach. But is it really better for larger projects? What
does is feel like to program more complex tasks in Smalltalk? The example presented in this section tries
to give a glimpse at object oriented programming in Smalltalk. If you are interested in more, I
recommend Total Telecommunication’s billing system in Martin Fowler’s "Analysis Patterns"
[FOWLER97]>. The example is taken from the GNU Smalltalk tutorial and models bank accounts. We
start with the class main Account class which has just the one attribute every account has: the balance.

Object subclass: #Account
instanceVariableNames: ’balance’
classVariableNames: ”
poolDictionaries: ” !

!Account class methodsFor: ’obtaining instances’!
new
|result|
result := super new.
result initialize.
^result
!!

!Account methodsFor: ’initialization’!
initialize
balance := 0
!!

This sequence of definitions is typical for a Smalltalk class. The constructor (class method "new")
creates a new account object and initializes it by sending the "initialize" message. This allows derived
class to easily extend the initialization. Next we add a few simple methods.

!Account methodsFor: ’printing’!
printOn: stream
super printOn: stream.
stream nextPutAll: ’ with balance: ’.
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balance printOn: stream.
!!

!Account methodsFor: ’moving money’!
spend: amount
balance := balance - amount
!
deposit: amount
balance := balance + amount
!!

This is enough functionality to run a few tests.

Smalltalk at: #a put: (Account new) !
a printNl !
a deposit: 125!
a deposit: 20!
a printNl!
a spend: 10!
a printNl!

In reality, there are different kinds of accounts. First, we consider a savings account. Its ’interest’
attribute contains the total interest of this account (starting with zero).

Account subclass: #Savings
instanceVariableNames: ’interest’
classVariableNames: ”
poolDictionaries: ”
category: nil!

!Savings methodsFor: ’initialization’!
initialize
interest := 0.
^ super initialize
!!

!Savings methodsFor: ’printing’!
printOn: stream
super printOn: stream.
stream nextPutAll: ’ and interest: ’.
interest printOn: stream.
!!

!Savings methodsFor: ’interest’!
interest: amount
interest := interest + amount.
self deposit: amount
!

clearInterest
|oldInterest|
oldInterest := interest.
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interest := 0.
^oldInterest
!!

In the initialization method we see the application of the special variable "super" which allows us to call
the method of the parent class Account after doing our own initialization of the interest. The second
account is a checkings account maintaining the number of used and remaining checks (they still use
checks in some parts of the world - and it is not old Europe). When writing a check (using the
’writeCheck’ method), the amount is spend and the check numbers updated.

Account subclass: #Checking
instanceVariableNames: ’checkCount checksLeft history’
classVariableNames: ”
poolDictionaries: ”
category: nil !

!Checking methodsFor: ’initialization’!
init
checksLeft := 0.
history := Dictionary new.
^super init
! !

!Checking methodsFor: ’printing’!
printOn: stream
super printOn: stream.
stream nextPutAll: ’ and checkCount: ’.
checkCount printOn: stream.
stream nextPutAll: ’ and checksLeft: ’.
checksLeft printOn: stream.

"Print the history of checks"
history associationsDo: [ :each |
stream nextPutAll: ’\ncheck no ’.
(each key) printOn: stream.
stream nextPutAll: ’: ’.
(each value) printOn: stream.
]
! !

!Checking methodsFor: ’spending’!
newChecks: number count: checkcount
checkCount := number.
checksLeft := checkcount
!

writeCheck: amount
| num |

"Check that we have checks left"
(checksLeft < 1)
ifTrue: [ ^self error: ’Out of checks’ ].
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"Make sure we’ve never used this check number before"
num := checkCount.
(history includesKey: num)
ifTrue: [ ^self error: ’Duplicate check number’].

"Record the check number and amount"
history at: num put: amount.

"Update check numbers and balance"
checkCount := checkCount + 1.
checksLeft := checksLeft - 1.
self spend: amount.
^num
!!

!Checking methodsFor: ’scanning’!
checksOver: amount do: aBlock
history associationsDo: [ :each |
((each value) > amount)
ifTrue: [aBlock value: each ]
]
!!

Smalltalk at: #c put: (Checking new) !
c printNl !
c deposit: 250 !
c printNl !
c newChecks: 100 count: 50 !
c printNl !
(c writeCheck: 32) printNl !
c printNl !

c checksOver: 250 do: [:x | x printNl ] !
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By now, we have seen procedural, object-oriented, and functional languages, but there is yet another
promising approach to programming: "programming in logic" as embodied in the Prolog programming
language. As you can imagine, the main area of application for a "logical" programming language is the
so-called "artificial intelligence". While the data structures and algorithms of AI can be implemented in
any language, we will see that Prolog allows for very natural and elegant solutions for these tasks. One
remark you will find when looking for Prolog is that Lisp is the assembly language and Prolog the high
level language of AI.

Prolog was invented in 1972 by the Alan Colmeraurer at the University of Marseilles as a theorem prover
implementing the ideas of Robert Kowalski (University of Edinburgh). The first efficient Prolog
compilers were developed by David Warren (also at the University of Edinburgh). Prolog has been
primarily used in research, most notably as part of the Japan’s ICOT Fifth Generation Computer Systems
Initiative. A successful implementation was Borland’s Turbo Prolog in the 1980’s. In 1995, Prolog
became an ISO standard.

7.1. Software and Installation

For the examples in this chapter, I have used the GNU implementation of prolog (version 1.2.18) by
Daniel Diaz. It is a Prolog compiler (based on the Warren Abstract Machine) and implements most of the
ISO standard. Callinggprolog takes us the the interactive shell.

GNU Prolog 1.2.18
By Daniel Diaz
Copyright (C) 1999-2003 Daniel Diaz
| ?-

Another popular open source Prolog compiler is SWI-Prolog by Jan Wielemaker.

7.2. Quick Tour

7.2.1. Goals, Facts, and Rules

What does our "Hello World" program look like in a logical programming language? It is just a single
line.
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| ?- write(’Hello World’).
Hello World

yes

The program itself does not look too different from many we have seen. The statement looks like a
function call finished with a period. The output, however, shows an additional message "yes" that gives
us some hint that this program does something else behind the scenes.

Prolog is all about facts, rules, and how to satisfy goals. Thewrite "function" is actually a built-in goal
that always succeeds and that happens to write a Prolog expression (in our case just a string) to an output
stream as a side effect.

The first example in any Prolog tutorial is a family tree. The facts define who is whose child, and the
after defining a few rules you can ask all kinds of questions concerning the relationships of the family
members. Here are some facts about a well-known family.

parent(elizabeth, elizabeth2).
parent(george6, elizabeth2).
parent(elizabeth2, charles).
parent(elizabeth2, andrew).
parent(elizabeth2, edward).
parent(philip, charles).
parent(philip, andrew).
parent(philip, edward).
parent(charles, william).
parent(charles, henry).
parent(diana, william).
parent(diana, henry).

Using a Prolog interpreter, we could enter these facts directly in the shell, but sincegprolog is a
compiler we have to read them from an file. Hence, we place the facts in a file calledfamily.pl and
read it into the Prolog system using theconsult goal.

| ?- consult(’family.pl’).
compiling .../family.pl for byte code...
.../family.pl compiled, 16 lines read - 1781 bytes written, 15 ms

yes

A shorthand forconsult(file) is the file in square brackets,[file] . Alternatively, we could also
read the facts from standard input by specifyinguser as the file name.

Now that these important facts are loaded, we can ask questions, that is, we can ask the Prolog system to
satisfy goals. We can, for example, check if the system has really learned the facts.

| ?- parent(philip, andrew).
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true ?

yes
| ?- parent(philip, hugo).

no

Things get a little bit more interesting when we introduce variables. You may have noticed that up to now
we have used lowercase identifiers only. Prolog uses the case of identifiers to distinguish their meaning.
Identifiers starting with an uppercase letter denote variables. If we want to find out who are andrew’s
parents, we just replace the first argument by a variable.

| ?- parent(X, andrew).

X = elizabeth2 ?

After finding the first answer, Prolog displays it and gives us the choice to stop the search or ask for
more. Hitting the enter key lets us return to the main prompt, the semicolon gives us the next answer, and
the keya (for all) lets Prolog look for all possible answers.

| ?- parent(X, andrew).

X = elizabeth2 ? ;

X = philip ? ;

no

For, we have only dealt with facts, but Prolog’s real power comes with rules. How can we define a grand
parent, for example? A grand parent is a parent who has at least one child who is a parent. In Prolog this
can be expressed by the following rule.

grandparent(C,G) :- parent(C,P), parent(P,G).

The symbol:- means "follows from", and the comma combines multiple goals with "and"
(conjunction). The whole rule can be read as "C is a grand parent of G if there is a P such that C is parent
of P and P is parent of G". This is first order predicate logic with an implicit "for all" on the left and
"exists" on the right hand side.

To enter this rule, you have to again enter it in a file and load this file using theconsult goal, or read it
from standard input usingconsult(user) . To finish your input you can either use the end-of-file key
(CTRL-D on UNIX), or the built-inend_of_file term.

| ?- consult(user).
compiling user for byte code...
grandparent(C,G) :- parent(C,P), parent(P,G).
end_of_file.
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user compiled, 2 lines read - 418 bytes written, 10844 ms

yes

With this rule in the system, we can now ask for henry’s grand parents.

| ?- grandparent(X, henry).

X = elizabeth2 ? a

X = philip

no

Here is another rule defining the sibling relationship.

sibling(A,B) :- parent(P,A), parent(P,B), A \= B.

The only new element is the/= operator checking if two terms are not identical (a child is not a sibling
of itself).

| ?- sibling(X,charles).

X = andrew ? a

X = edward

X = andrew

X = edward

no

Unfortunately, we get multiple entries since the rule applies to both parents. We have to wait until we can
handle lists properly to solve this problem.

7.2.2. Structures

Prolog structures combine related data into a single term. They syntactically indistinguishable from
goals, that is, they look like function calls as well.

| ?- X = a(1, 2).
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X = a(1,2)

yes
| ?- a(X, Y) = a(1, b(c, d)).

X = 1
Y = b(c,d)

yes

The "function" is called the "functor" of the structure. I like to think of Prolog structures as named tuples
(just put the functor as a name in front of a tuple).

As you can see, structures don’t have to be declared, and they can participate in matching operations.
Structures are the building blocks of Prolog’s other data structures such as lists and arithmetical
expressions. These other forms are just syntactic sugar for the equivalent nested structures.

7.2.3. Collections

It seems like programming for artificial intelligence requires lots of list processing, since the both, Lisp
and Prolog, have strong list support. A Prolog list literal is a sequence of comma separated terms
enclosed in square brackets (a list syntax which looks familiar by now).

| ?- X = [a, b, c].

X = [a,b,c]

yes
| ?- X = [1, ’blah’, [x, y]].

X = [1,blah,[x,y]]

yes

Internally, list are represented as trees of linked nodes with head and tail, just like in Lisp. We can create
a list using the dot operator. combining an element and a list as head and tail of the new list.

| ?- X = .(a, [b, c]).

X = [a,b,c]

yes
| ?- .(X, Y) = [a, b, c].
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X = a
Y = [b,c]

yes

An alternative syntax is the vertical bar inside of square brackets separating head and tail.

| ?- X = [a | [b, c]].

X = [a,b,c]

yes
| ?- [X | Y] = [a, b, c].

X = a
Y = [b,c]

yes

It is interesting to see the built-in list predicates in comparison to the list fuctions in functional
languages. There is, for example, amember goal which checks if a term is contained in a list. Using
pattern matching, we can also use this goal to walk through the member of a list.

| ?- member(b, [a, b, c]).

true ? a

no
| ?- member(X, [a, b, c]).

X = a ? a

X = b

X = c

no

We could define this predicate ourselves with the following two rules.

member(X, [X|_]).
member(X, [_|Tail]) :- member(X, Tail).

Similarly, the built-in concatenation goalappend can be used to show all the combinations of lists
whose concatenation is identical to a given result list.

| ?- append([1, 2], [3, 4], X).

X = [1,2,3,4]
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yes
| ?- append(X, Y, [1, 2, 3]).

X = []
Y = [1,2,3] ? a

X = [1]
Y = [2,3]

X = [1,2]
Y = [3]

X = [1,2,3]
Y = []

no

7.2.4. Arithmetic

You may have wondered why we did not test arithmetical expressions right after the "Hello World"
program. The reason is that arithmetic does not fit easily into the Prolog’s logical programming
paradigm. Prolog was not invented to solve numerical problems. However, it is possible to perform
computations in Prolog. The key are special operators which cause the Prolog system to evaluate an
arithmetical expression before continuing the resolution.

If you would like to use Prolog as a calculator, theis operator is all you need. It works like the equality
operator, but evaluates its right hand side before matching it with the left hand side.

| ?- X is 3 + 4 * 5.

X = 23

yes

The comparison operators evaluate the expressions on both sides and compare the numerical results.

| ?- 2 + 3 > 1 + 2.

yes
| ?- 2 + 2 =< 1 + 3.

yes
| ?- 2 + 2 >= 1 + 3.
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Note that the "less or equal" operator has the unusual symbol=< (the only argument I can think of is the
symmetry between "greater or equal" and "less or equal").

There are special operators for numerical equality and inequality,=:= and=\= which also force both
sides to be evaluated.

| ?- 1 + 3 =:= 2 + 2.

yes
| ?- 4 =\= 5.

yes

7.3. More Features

7.3.1. Controlling Backtracking

7.3.2. Operators
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"Ada, language for a complex world" is the title of a (german) tutorial
(http://www.uni-kassel.de/~bretz/computer/ada-tutorial/vorwort.html). One could also say "a complex
language for a complex world", since Ada is a big, complex language containing a wealth of features.

Ada is the only language in this book that is the result of a contest. This contest was initiated by the DoD
in 1975 to findthenew programming language for mission critical systems (in particular real-time and
embedded systems). The winner, designed by Honeywell-Bull, was named Ada after the world’s first
programmer, Lady Ada Lovelace, the assistant of Charles Baggabe. The first standard came out in 1983
(Ada83), and a significant extension including object-oriented features in 1995 (Ada95).

8.1. Software and Installation

We will use the GNU Ada95 compilerGnat, version 3.14p, to run the examples in this chapter. It is part
of most Linux distributions. The compiler consists of a whole set of tools to compile, link, and organize
Ada programs. For most of our sample programs it is sufficient to call the utilitygnatmake on the
source file. It will perform the required compile and link steps automatically.

8.2. Quick Tour

8.2.1. Hello World

Here is the message to the (complex) world as seen by Ada.

with Ada.Text_IO;
procedure Hello is
begin

Ada.Text_IO.Put_Line("Hello World");
end;

To run the program, put the source code in a file calledhello.adb and callgnatmake .

ahohmann@kermit> gnatmake hello.adb
gnatgcc -c hello.adb
gnatbind -x hello.ali
gnatlink hello.ali
ahohmann@kermit> hello
Hello World
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What does this simple example tell us? Apparently, Ada has a package structure, and we have to tell the
compiler which packages we would like to use. In this case, it is the standard library package
Ada.Text_IO . Coming from a structural programming background, Ada does not insist on classes for
everything. ProcedurePut_Line , for example, is a direct member of the standardText_IO package,
and our own procedureHello does not have any surrounding structure.

From this tiny example we can tell that Ada definitely does not belong to the C family, but in contrast to
Eiffel we have to live with plenty of semicolons separating statements. As a matter of style, Ada uses the
underscore character and capitalization of the first letter to separate words in identifiers. However, this is
nothing but a style convention, since Ada is case insensitive (apart from string literals).

Since Ada is mainly aimed at technical applications, is should not be surprising that standard
arithmetical expressions work as expected.

with Ada.Text_IO;
with Ada.Float_Text_IO;

procedure Test_Arithmetic1 is
X, Y: Float;

begin
Y := 10.0;
X := Y + 3.5 * 4.0 + 2.0 ** 3;
Ada.Text_IO.Put("X=");
Ada.Float_Text_IO.Put(X);
Ada.Text_IO.New_Line(1);

end;

result:
X= 3.20000E+01

What’s new in this example? First, the Pascal-like declaration of the variablesX andY. All local variables
of a procedure have to be declared in advance in the block betweenis and thebegin . Second, Ada uses,
again like Pascal, the proper assignment operator:= . Third, arithmetical expressions use standard infix
operators and preferences.

We also use a new standard package for printing floating point number,Ada.Float_Text_IO . Since the
standard library calls start getting tedious and hard to read, we should introduce theuse directive which
imports all the symbols of a package into the local namespace (just like C++ and C#).

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;

procedure Test_Arithmetic2 is
X, Y: Float;

begin
Y := 10.0;
X := Y + 3.5 * 4.0 + 2.0 ** 3;
Put("X=");
Put(X);
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New_Line(1);
end;

As we see, Ada supports overloading and picks the correct procedure depending on the argument type. If
Java, C#, and Eiffel are called strongly typed languages, I’m tempted to call Ada a "very strongly typed"
language. The constants in the example above, for example, have to be floating point constants or the
program will not compile. If we use integer constants, we need to explicitly cast them to floating point
numbers like in the following assignment.

procedure Test_Arithmetic is
X: Float;

begin
X := Float(5);

end;

8.2.2. Enumerations

We get another glimpse of Ada’s very strong typing when looking at our first own type, a simple
enumeration. While C’s enumerations are just integers in disguise and Java abandoned enumerations
alltogether, Ada fully supports them with type safety and a complete set of operations.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Enum_Test is
type Color is (Red, Blue, Green);
package Color_IO is new Enumeration_IO(Color); use Color_IO;

begin
Put("Color’Pos(Blue)=");
Put(Color’Pos(Blue), 1);
Put(" (");
Put(Blue);
Put_Line(")");

end;

output:
Color’Pos(Blue)=1 (BLUE)

This example introduces a number of new features. We start with the definition of the enumeration type
Color itself. Remember that identifiers are case insensitive, so thatBlue , BLUE, andbLue are all the
same value.

The next line is a first example of the instantiation of a generic package. A strongly typed language can
hardly live without parametrized types (if only for type-safe collections), and generic packages are Ada’s
implementation of this concept. We have already used generic packages without thinking about it. The
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standard packageFloat_Text_IO , for example, is an instantiation of the generic packageFloat_IO .
We could have defined it as

package Float_Text_IO is new Float_IO(Float);

Float_IO is a generic package defining input and output operations for any kind of floating point type.
We will learn how to define our own generic types inSection 8.3.2>.

Similar toFloat_IO , the genericEnumeration_IO package defines procedures for any kind of
enumeration type. In the example, we instantiate it with our own enumeration typeColor .

The next new feature is the expressionColor’Pos(Blue) . Ada defines a number of attributes for the
entities (such as types, packages, array) occuring in the language. The syntax for accessing such a
predefined attribute uses an apostrophe. One attribute of an enumeration type is thePos function which
return the integer position (starting at zero) of an enumeration value. Observe that, unlike C, the position
is completely separated from the actual enumeration value.

8.2.3. Functions and Procedures

We have already defined simple procedures without parameters in the examples above. Parameters are
specified in Pascal manner with the parameter name followed by a colon and the parameter’s type. A
function returns a value whose type is is stated with thereturn keyword.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
function Times2(X: Integer) return Integer is
begin

return 2*X;
end;

begin
Put("Times2(55)=");
Put(Times2(55));
New_Line(1);

end;

The example also demonstrates that fuctions can be defined within other functions or procedures. In
general, Ada allows to definitions inside other definitions.

Multiple parameter declarations are separated with semicolons, and multiple parameters of the same type
use a comma.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
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procedure Main is
function Add(A: Integer; B, C: Integer) return Integer is
begin

return A + B + C;
end;

begin
Put("Add(4, 5, 6)=");
Put(Add(4, 5, 6));
New_Line(1);

end;

By default, a function or procedure can not modify the values passed to it. The arguments are passed by
value (and not copied back). However, we may qualify a parameter using thein andout qualifiers to
change this default behavior. Here is theTimes2 function realized as a procedure modifying its
argument.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
procedure Times2(X: in out Integer) is
begin

X := 2*X;
end;

X: Integer := 55;
begin

Times2(X);
Put(X);
New_Line(1);

end;

8.2.4. Control Structures

Ada has all the control structures we expect from a modern procedural language. All use the same block
structure with theend keyword following by the name of the control structure. There are two conditional
statements,if andcase .

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
function Sign(X: Integer) return Integer is
begin

if X < 0 then
return -1;

elsif X > 0 then
return 1;

87



Chapter 8. Ada

else
return 0;

end if;
end;

begin
Put(Sign(123));
Put(Sign(-123));
New_Line(1);

end;

Thecase statement allows us to uses ranges and alternatives to select the alternative actions.

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

function WorkDay(D: Day) return Boolean is
begin

case D is
when Mon .. Fri => return True;
when Sat | Sun => return False;

end case;
end;

begin
if WorkDay(Mon) then

Put("Monday is a work day");
end if;
New_Line(1);

end;

Alternatively, we could have used theothers keyword to define the action for the remaining cases.

function WorkDay(D: Day) return Boolean is
begin

case D is
when Mon .. Fri => return True;
when others => return False;

end case;
end;

Loops come in three different flavors: plain loops with exit statements,while loops, andfor loops over
ranges of enumerated types. Here are three different ways to count from zero to nine.

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
N: constant Integer := 10;
I: Integer;

begin
I := 0;
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loop
Put(I);
I := I + 1;
if I = N then exit; end if;

end loop;

I := 0;
while I < N loop

Put(I);
I := I + 1;

end loop;

for I in 0 .. N - 1 loop
Put(I);

end loop;
end;

The example also demonstrates how to define constants in Ada: just put theconstant keyword in front
of the type.

The for loop lets us go backwards as well, but we can not vary the step size. Note that the range is
always specified in ascending order.

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
N: constant Integer := 10;

begin
for I in reverse 1 .. N loop

Put(I);
end loop;

end;

Ada’s for loops are not restricted to integers. We can use any range of an enumerated type.

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

begin
for I in Day loop

Put(Day’Pos(I));
end loop;

for I in Mon .. Fri loop
Put(Day’Pos(I));

end loop;
end;
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Theexit statement can also be used with thewhile andfor loops, and it may refer to a label if we
would like to exit not just the innermost loop. Just like thegoto statement, we will conciously skip this
part, since there are typically better solutions available.

8.2.5. Subtypes

While other strongly types languages offer a number of predefined integer and floating point types, Ada
takes strong typing one step further and allows us to define any range as a new type. The statement

subtype Die is Integer range 1 .. 6;

defines the type consisting of the integer numbers one to six. The following program uses this type for a
simple electronic die.

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Numerics.Discrete_Random;

procedure Test_Arithmetic5 is
subtype Die is Integer range 1 .. 6;
package Random_Die is new Ada.Numerics.Discrete_Random(Die);
use Random_Die;

D: Die;
G: Generator;

begin
loop

D := Random(G);
Put(D);
delay Duration(1);

end loop;
end;

Again, we make use of a generic standard package. We define the random number package for our new
type by instantiatingDiscrete_Random . We then use theGenerator type out of this package to
declare the random number generator for our subtype. TheRandom function (also from theRandom_Die

package) is called in an infinite loop to generate new random numbers. Thedelay statement holds the
program for one second.

Similarly, the floating point interval between zero and one can be defined as the subtype

subtype Chance is Float range 0.0 .. 1.0;

When using such a subtype, leaving its range will cause a constraint exception.
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procedure Test_Arithmetic3 is
subtype Chance is Float range 0.0 .. 1.0;
X: Chance;

begin
X := 1.5;

end;

result:
raised CONSTRAINT_ERROR : test_arithmetic4.adb:5

8.2.6. Arrays

Another example of Ada’s careful treatment of types are arrays. An array can be seen as a map of a fixed
number of indexes to values. Each index is taken from a finite, enumerated set. In other words, an array
maps the cross product of some finite enumerated types to the value type. In the simplest case we can
define a vector, that is, a one dimensional array whose indexes are taken from an integer range.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;

procedure Main is
A: array (Integer range 0 .. 2) of Float;

begin
A(2) := 55.0;
Put(A(2));
New_Line(1);

end;

Instead of the integer range, we can also use our own enumeration type.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
type Color is (Red, Blue, Green);
A: array (Color) of Integer;

begin
for I in Color loop

A(I) := 0;
end loop;

A(Red) := 37;

for I in A’Range(1) loop
Put(A(I));

end loop;

New_Line(1);
end;
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This example also demonstrates how we can extract the range information from the array itself. The
Range(1) attribute gives us the range of the first dimension.

We can initialize the array while defining it using Ada’s flexible array "aggregates" which can be used to
set individual elements, alternatives, ranges, or all remaining elements all in one expression.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
A: array (Day) of Integer := (

Tue => 1, Mon | Wed => 2, Thu .. Sat => 3, others => 4);
begin

for I in A’Range(1) loop
Put(A(I));

end loop;
New_Line(1);

end;

Multidimensional arrays work the same way with full support for aggregates.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Day, 0 .. 23) of Boolean;
Busy: Schedule := (Mon .. Fri => (8 .. 16 => True, others => False),

others => (others => False));

package Day_IO is new Enumeration_IO(Day); use Day_IO;
begin

for D in Busy’Range(1) loop
Put(D); Put(":");
for H in Busy’Range(2) loop

Put(" ");
if (Busy(D, H)) then Put("T"); else Put("F"); end if;

end loop;
New_Line(1);

end loop;
end;

Here we define aSchedule type mapping the days of the week and the 24 hours to the boolean type. We
then declare theBusy variable of this type and initialize it withTrue during the working hours of the
work days.
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8.2.7. Access Types

Ada’s typesafe variant of pointers areaccess types. Like in many other languages, thenew operator (also
called "allocator") creates an object on the heap and returns a reference to it, that is, an access type value
which allows us to access the allocated object.

As one of Ada’s unique twists, we dereference a pointer with the specialall attribute.

8.2.8. Records and Objects

A record consists of named fields called "components" in Ada. Like in most languages we cover in this
book, the components are referenced using a period between the record variable and the component
name.

with Ada.Float_Text_IO; use Ada.Float_Text_IO;

procedure Main is
type Point is record

X: Float;
Y: Float;

end record;

P: Point := (0.0, 0.0);
begin

P.Y := 1.5;

Put(P.X); Put(P.Y);
end;

Record initializer can become as complex as the array aggregates in the last section. In the previous
example we have used positional values, but we can as easily use the component names(X => 0.0, Y

=> 0.0) , multiple alternatives(X | Y => 0.0) , theothers keyword(others => 0.0) , or even a
combination of positional and named initializer(0.0, Y => 0.0) to achieve the same effect.

Here is the Ada version of the simplisticPerson structure.

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
type Ref_String is access String;
type Person is

record
Name: Ref_String;
Age: Integer := 0;

end record;

P: Person;
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begin
P.Name := new String’("Homer");
P.Age := 55;

Put_Line("Name=" & P.Name.all);
end;

The first step towards object orientation is a the ability to extends record types. In order to do so the base
type has to be "tagged". For now, this only means adding thetagged keyword to the type definition.
Under the hood, it implicitly adds type information to the record which can be used by Ada at runtime to
determine the type of a record.

8.2.9. Packages

The main organizational unit of Ada is a package. A package combines types and functions which
belong together just like attributes and methods of a class in a "pure" object-oriented language. Similar to
C++ and Objective C, Ada splits the package definition into two parts: package declaration and package
body. The package declaration is used by the compiler to support separate compilation units with
well-defined interfaces (and enough information to link the separately compiled units to an executable).

The package version of "Hello World" consists of three files (this example is taken from gnat’s user
guide): The first file,greetings.ads ("ads" like "Ada Specification") contains the package
specification declaring the packageGreetings with two proceduresHello andGoodbye

package Greetings is
procedure Hello;
procedure Goodbye;

end Greetings;

The package body contained ingreetings.adb ("adb" like "Ada Body") implements these procedures.

with Text_IO; use Text_IO;
package body Greetings is

procedure Hello is
begin

Put_Line ("Hello WORLD!");
end Hello;
procedure Goodbye is
begin

Put_Line ("Goodbye WORLD!");
end Goodbye;

end Greetings;
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Finally, we need a main program using our new package. The filenamehelloworld.adb corresponds
to the name of the main procedure.

with Greetings;
procedure HelloWorld is
begin

Greetings.Hello;
Greetings.Goodbye;

end HelloWorld;

When compiling the main program usinggnatmake helloworld.adb , the compiler sees the import
statementwith Greetings and automatically looks for this package. It finds the specification and body
in the local directory, compiles it, and links all the components together to obtain thehelloworld

application.

8.2.10. Objects

8.3. More Features

8.3.1. Function Pointers

In many situations, passing functions to other functions as parameters is the most suitable way to create
flexible programs. Therefore, Ada95 supports type-safe function pointers or "access types for functions"
in Ada parlance. Here is an implementation of the trapezoidal rule to compute the integral of a function.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;

procedure Main is
type Float_Function is access function (X: Float) return Float;

function Integrate(F: Float_Function; A, B: Float) return Float is
X: Float := A;
Y: Float := 0.0;
DeltaX: Float := 1.0e-5;
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begin
loop

Y := Y + DeltaX * (F(A) + F(B)) / 2.0;
X := X + deltaX;
if X >= B then exit; end if;

end loop;
return Y;

end;

function Square(X: Float) return Float is
begin

return X*X;
end;

begin
Put(Integrate(Square’Access, 0.0, 2.0));
New_Line(1);

end;

As with other values, we obtain the pointer (or access) to a function using theAccess attribute. We can
call the access function as if it were a regular function (as long as it has parameters - otherwise we need
to userF.all ).

8.3.2. Generic Packages

Strong typing necessitates some mechanism to define types depending on other types. Ada lets us
parametrize functions and packages with type, functions, values, and even other packages.

The following first example shows a genericSwap procedure using theItem type as a type parameter.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
generic

type Item is private;
procedure Swap(X, Y: in out Item);

procedure Swap(X, Y: in out Item) is
T: Item;

begin
T := X; X := Y; Y := T;

end;

procedure Integer_Swap is new Swap(Integer);

A: Integer := 55;
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B: Integer := 66;
begin

Put(A); Put(B); New_Line(1);
Integer_Swap(A, B);
Put(A); Put(B); New_Line(1);

end;

The procedure becomes generic by placing the declaration of the generic parameters between the
generic andprocedure keywords. When using generic constructs, we always have to separate the
declaration of the generic entity (here the procedureSwap) from its definition. In contrast to C++, we do
not have to repeat the generic part in the definition.

To use the generic procedure, we have to instantiate it with a generic parameter. In our example, we
instantiate the genericSwap procedure with theInteger type. The generic parameters are passed just
like any other function or procedure parameters.

As mentioned above, generics can be used with almost every construct in Ada. Here is a slightly more
complex example defining a generic package implementing a stack.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
generic

Max: Positive;
type Item is private;

package Stack is
procedure Push(X: in Item);
function Pop return Item;
function Is_Empty return Boolean;

end Stack;

package body Stack is
Data: array(0 .. Max) of Item;
Top: Integer range 0 .. Max := 0;

procedure Push(X: in Item) is
begin

Data(Top) := X;
Top := Top + 1;

end Push;

function Pop return Item is
begin

Top := Top - 1;
return Data(Top);

end Pop;

function Is_Empty return Boolean is
begin
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return Top = 0;
end Is_Empty;

end Stack;

package My_Stack is new Stack(10, Integer);
use My_Stack;

begin
Push(55);
Push(66);

while not Is_Empty loop
Put(Pop); New_Line(1);

end loop;
end;

The approach is the same: we have to split declaration and definition and put the generic part ahead of
the declaration. The example also demonstrates the use of two different kinds of generic parameters: the
positive integerMax and the (arbitrary) typeItem .

The example becomes more useful if we define a stack type inside a generic package. This way we can
use multiple stacks.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
generic

type Item is private;
Max: Positive;
Default: Item;

package Stack_Of is
type Stack is private;

procedure Push(S: in out Stack; X: in Item);
procedure Pop(S: in out Stack; X: out Item);
function Is_Empty(S: in Stack) return Boolean;

private
type Stack_Data is array(0 .. Max) of Item;
type Stack is

record
Top: Integer range 0 .. Max := 0;
Data: Stack_Data := (others => Default);

end record;
end Stack_Of;

package body Stack_Of is
procedure Push(S: in out Stack; X: in Item) is
begin

S.Data(S.Top) := X;
S.Top := S.Top + 1;
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end Push;

procedure Pop(S: in out Stack; X: out Item) is
begin

S.Top := S.Top - 1;
X := S.Data(S.Top);

end Pop;

function Is_Empty(S: in Stack) return Boolean is
begin

return S.Top = 0;
end Is_Empty;

end Stack_Of;

package My_Stack is new Stack_Of(Integer, 10, 0);

S: My_Stack.Stack;
X: Integer;

begin
My_Stack.Push(S, 55);
My_Stack.Push(S, 66);

while not My_Stack.Is_Empty(S) loop
My_Stack.Pop(S, X);
Put(X); New_Line(1);

end loop;
end;

Once we have understood Ada’s generic machinery, its application to more complex situations is straight
forward.

8.3.3. Overflow

Ada was clearly designed with safety as a first priority (that is, for "mission critical" applications in the
sense of "space mission"). As an example, all numerical computations are checked for overflows. The
following program would run happily forever using C, but stops rather quickly in Ada once the limit of
the integer range is exceeded.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Int_Overflow is
X: Integer := 1;

begin
loop

99



Chapter 8. Ada

X := 2 * X;
Put("X=");
Put(X);
New_Line(1);

end loop;
end;

output:
X= 2
X= 4
X= 8
...
X= 268435456
X= 536870912
X= 1073741824

raised CONSTRAINT_ERROR : int_overflow.adb:8

Using thegnat compiler, we have to specify the-gnato option to experience the desired behavior,
sincegnat switches the overflow checking off by default.

8.3.4. Modular Types

Here is another example of Ada’s nifty little features solving everyday programming problems: modular
types. Who has not dealt with some cyclic integer type throughout his or her programming career coding
the module arithmetic by hand? In Ada, we simply define the type asmod NwhereN is some positive
integer.

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
N: constant Integer := 3;
type Ring is mod N;
X: Ring := 0;

package Ring_IO is new Modular_IO(Ring); use Ring_IO;
begin

for I in 0 .. 10 loop
Put(X);
X := X + 1;

end loop;
end;

The modular typeRing consists of the numbers zero to two. All computations, such as adding on in the
loop, are performed modulo three. Like enumerations, modular types have their own generic input/output
packageModular_IO which we instantiate here asRing_IO in order to be able to print the value of the
modular variableX.
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The standard packageInterfaces (called this way because it is used to interface with other languages
such as C) contains a number of modular types where the modulusN is a power of two, for example
Unsigned_8 with modulus 256. Together with these types, the package also provides shift and rotate
functions.

with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;

procedure Main is
X: Unsigned_8 := 1;

package Unsigned_8_IO is new Modular_IO(Unsigned_8); use Unsigned_8_IO;
begin

for I in 0 .. 10 loop
Put(X);
X := Rotate_Right(X, 1);

end loop;
end;

output: 1 128 64 32 16 8 4 2 1 128 64

8.3.5. Parallelism

Most modern programming languages support parallel programming with some multithreading API and
sometimes additional primitives for synchronization such as Java’ssynchronized keyword. Ada uses a
different approach and models typical patterns of defining and controlling parallel activities directly in
the language.

The first tool is thetask construct which allows us to define an activity which is run in parallel to the
instructions of a procedure.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
task Sub;
task body Sub is
begin

for I in 1 .. 5 loop
Put("Sub: "); Put(I); New_Line(1);
delay 0.2;

end loop;
end Sub;

begin
for I in 1 .. 5 loop

Put("Main: "); Put(I); New_Line(1);
delay 0.1;
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end loop;
end;

The main procedure counts from one to five with a delay of 0.1 seconds. The taskSub also counts from
one to five, but with a delay of 0.2 seconds. The resulting output shows how the two activities are
executed in parallel. The procedure stops after all threads are done, that is, the main thread is waiting
until the sub task is finished.

output:
Main: 1
Sub: 1
Main: 2
Sub: 2
Main: 3
Main: 4
Sub: 3
Main: 5
Sub: 4
Sub: 5

A task allows us to run multiple activities in parallel, but to become useful they have to be able to
communicate with each other. There are two way to accomplish this kind of communication in Ada:
using shared data or sending messages.

Beginning with messages, we can define entry points which cause a task to wait until another task calls
(sends a message to) the entry point. This mechanism is called a rendezvous. Apart from the different
keywords (entry for the declaration andaccept for the definition), an entry looks just like a procedure.

The following example defines the entryWake_Up in the taskSub with a single integer argument. The
task consists of a loop which processesWake_Upmessages until the argument is equal to zero.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
task Sub is

entry Wake_Up(I: Integer);
end Sub;

task body Sub is
Stop: Boolean := False;

begin
while not Stop loop

Put("Sub: Wait"); New_Line(1);
accept Wake_Up(I: Integer) do

Put("Sub: "); Put(I); New_Line(1);
if I = 0 then

Stop := True;
end if;
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end Wake_Up;
end loop;
Put("Sub: Stop"); New_Line(1);

end Sub;
begin

for I in reverse 0 .. 3 loop
delay 0.1;
Put("Main: Send"); New_Line(1);
Sub.Wake_Up(I);

end loop;
Put("Main: Stop"); New_Line(1);

end;

The main procedure sendsWake_Upmessages counting from three down to zero. The statement
Sub.Wake_Up(I) submitting the message looks like a method call. Here is corresponding output:

Sub: Wait
Main: Send
Sub: 3
Sub: Wait
Main: Send
Sub: 2
Sub: Wait
Main: Send
Sub: 1
Sub: Wait
Main: Send
Sub: 0
Main: Stop
Sub: Stop

Of course, we are not retricted to a single entry. Here is an example of a buffer containing a single value.
It is implemented as a task with the two entriesSet andGet .

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
task Buffer is

entry Set(X: in Integer);
entry Get(X: out Integer);

end;

task body Buffer is
Value: Integer;

begin
loop

accept Set(X: in Integer) do
Put("Buffer.Set: "); Put(X); New_Line(1);
Value := X;

end Set;
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accept Get(X: out Integer) do
Put("Buffer.Get: "); Put(Value); New_Line(1);
X := Value;

end Get;
end loop;

end Buffer;

task Consumer;
task body Consumer is

I: Integer;
begin

loop
Buffer.Get(I);
Put("Consumer: "); Put(I); New_Line(1);

end loop;
end Consumer;

begin
for I in 0 .. 2 loop

Buffer.Set(I);
delay 1.0;

end loop;
end;

TheConsumer task continuously asks the buffer for the latest value and "consumes" it. The main
procedure inserts the values zero to two into the buffer with a one second delay. Here is the resulting
output:

Buffer.Set: 0
Buffer.Get: 0
Consumer: 0
Buffer.Set: 1
Buffer.Get: 1
Consumer: 1
Buffer.Set: 2
Buffer.Get: 2
Consumer: 2

Note how the buffer task and its entries make sure that the actions are carried out in the correct order.

In the previous example the consumer was fast and the producer (the main task) slow. The opposite case
is often handled with a queue. In this situation, the task may receive both events (provided the queue is
neither empty nor completely full). Ada supports this with theselect statement and guarding
conditions which can be associated with entries.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
task Queue is
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entry Push(X: in Integer);
entry Pull(X: out Integer);

end;

task body Queue is
N: Integer := 10;
In_Ptr, Out_Ptr, Count : Integer := 0;
Values: array (Integer range 0 .. N - 1) of Integer;

begin
loop

select
when Count < N =>

accept Push(X: in Integer) do
Values(In_Ptr) := X;
In_Ptr := (In_Ptr + 1) mod N; Count := Count + 1;

end;
or

when Count > 0 =>
accept Pull(X: out Integer) do

X := Values(Out_Ptr);
Out_Ptr := (Out_Ptr + 1) mod N; Count := Count - 1;

end;
end select;

end loop;
end Queue;

task Consumer;
task body Consumer is

I: Integer;
begin

loop
delay 1.0;
Queue.Pull(I);
Put("Consumer: "); Put(I); New_Line(1);

end loop;
end Consumer;

task Producer;
task body Producer is
begin

for I in 10 .. 12 loop
delay 3.0;
Put("Producer: "); Put(I); New_Line(1);
Queue.Push(I);

end loop;
end Producer;

begin
for I in 0 .. 2 loop

Put("Main: "); Put(I); New_Line(1);
Queue.Push(I);

end loop;
end;
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To make things more interesting we added a second (slow) producer. This way we see some of the
scenarios in the output:

Main: 0
Main: 1
Main: 2
Consumer: 0
Consumer: 1
Producer: 10
Consumer: 2
Consumer: 10
Producer: 11
Consumer: 11
Producer: 12
Consumer: 12

First, the fast main producer pushes the values zero to two on the queue. They are consumed by the
consumer, while the slow producer starts pushing his values. In the end the consumer is faster than the
producers.

For shared data access as the second way of communication between parallel tasks, Ada has so-called
protected objects. Apart from theprotected keyword they look like packages, but the data (which must
be defined in the private section of the protected object’s declaration) is protected from simultaneous
access. The following example wraps a simple integer value in a protected objectShared_Data .

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
protected Shared_Data is

function Get return Integer;
procedure Set(New_Value: Integer);

private
Value: Integer := 0;

end Shared_Data;

protected body Shared_Data is
function Get return Integer is
begin

return Value;
end Get;

procedure Set(New_Value: Integer) is
begin

Value := New_Value;
end Set;

end Shared_Data;
begin

Shared_Data.Set(55);
Put(Shared_Data.Get); New_Line(1);
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end;

In many cases we would like to define not just a single protected object, but a type which we can use to
create as man protected objects as we want to. This is achieved by adding thetype keyword to the
declaration of the protected object. Here is a variation of the previous example using such a protected
type.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
protected type Shared_Data is

function Get return Integer;
procedure Set(New_Value: Integer);

private
Value: Integer := 0;

end Shared_Data;

protected body Shared_Data is
function Get return Integer is
begin

return Value;
end Get;

procedure Set(New_Value: Integer) is
begin

Value := New_Value;
end Set;

end Shared_Data;

X: Shared_Data;
begin

X.Set(55);
Put(X.Get); New_Line(1);

end;

As you can imagine, protected types are useful for the typical semaphore patterns.

8.4. Discussion

In this short chapter (which is already longer than most of the other ones), we could cover only a fraction
of Ada’s features. Ada is a complex language with dozens of special syntactic constructs and rules how
they can applied. However, this also means that Ada has a direct answer for many computing tasks as we
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have see, for example, when discussing parallelism. It just takes a little bit more time and experience to
find this answer.
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SQL (Structured Query Language) in a book about general purpose programming languages? Our main
goal is to find the most expressive programs, and SQL is definitely able to describe the solution of some
complex tasks in a concise and expressive way. These tasks do not only include queries and updates, but
also the related transaction handling which is not as easily handled by any of other language in this book.

The relational database model was developed by Ted Codd at IBM in the late 1960’s and first published
in 1970. SQL dates back to IBM’s implementation of a relational database system during the 1970’s.
This system had a query language called SEQUEL (Structured English Query Language) whose name
was later shortened to SQL. The language was also adopted by another (at that time) small company that
created a relational database management system called Oracle.

The first ANSI standard for SQL, SQL86, was adopted in 1986. Since then there have been three
updates, SQL89, SQL92, and finally SQL99 (now standardizing everything from complex data types
(arrays, etc.) to a call level interface similar to ODBC). However, there are significant differences
between the between the SQL implementations of the different relational database systems, especially
when it comes to the procedural extensions of SQL.

9.1. Software and Installation

SQL is always implemented as part of a relational database system (RDBMS) which means that we have
to pick a suitable RDBMS for our examples. Sticking to open source, PostgreSQL
(http://www.postgresql.org) offers very good SQL support and also has a extension similar to Oracle’s
psql which shows how procedural elements can be added to SQL to make it a fully-fledged general
purpose programming language.

Since we are dealing with a database system based on the client-server model, getting started takes a little
bit more effort than just starting an interactive shell. We need to install the software, start the database
server, create a user and database, and finally start the interactive client. Fortunately, PostgreSQL is fairly
easy to install, and most of this burden is handled automatically. When installing the PostgreSQL
package on a Linux system (Debian in my case), the system creates the UNIX userpostgres under
which the server runs and adds the server to the boot sequence (/etc/init.d/postgresql ) so that it
starts automatically. The only thing left to do is to create a database user for our personal UNIX user (in
my caseahohmann) by calling thecreate_user command under thepostgres user.

Once this is accomplished, we can start PostgreSQL’s interactive clientpsql and start our experiments.

ahohmann@kermit:~$ psql sample
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
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\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

This interactive shell allows us to enter any SQL statement. Shell commands start with a backslash (e.g.,
\q to leave the shell). We can use the help commands\? and\? to get an overview of the available
commands and SQL statements.

9.2. Quick Tour

9.2.1. Expressions

Typically, SQL tutorials start with a small sample table and some simple queries, but since we are
looking at SQL as a general purpose programming language, we stick to our "Hello World" program.

sample=> select ’Hello World’;
?column?

-------------
Hello World

(1 row)

Nonetheless, we end up with aselect statement. Whenever we want to get some response from SQL,
we have to define a query using theselect keyword. In the simplest case, theselect keyword is
followed only by an expression. The expression is evaluated and the resulting value is the result of the
select statement.

The result of a query is always a table (as the central concept of the relational model). Hence, we get our
single message string in form of a table with the single column named?column? and a single row
containing the actual data. We can help the server to choose a better name for the column using anas

clause.

sample=> select ’Hello World’ as message;
message

-------------
Hello World

(1 row)

If we can an individual string, what about arithmetical expressions? We can indeed abuse our
PostgreSQL client as a calculator.

sample=> select 3+4*5;
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?column?
----------

23
(1 row)

sample=> select 1.5e-2 * 5;
?column?

----------
0.075

(1 row)

sample=> select 2 ^ 10;
?column?

----------
1024

(1 row)

We can also call functions as part of theselect expression. The following examples use the built-in
square root functionsqrt , the substring functionsubstr , and the functionnow returning the current
date and time.

sample=> select sqrt(2.0);
sqrt

-----------------
1.4142135623731

(1 row)

sample=> select substr(’Hello World’, 2, 6);
substr

--------
ello W

(1 row)

sample=> select now();
now

-------------------------------
2003-12-22 12:01:20.401652+01

(1 row)

There are hundreds of built-in functions for mathematics, strings, dates, and so forth. To see a complete
list, use the\df (describe functions) command. To find out more about a particular function, call\df

followed by the name of the function.

sample=> \df sqrt
List of functions

Result data type | Name | Argument data types
------------------+------+---------------------

double precision | sqrt | double precision
numeric | sqrt | numeric

(2 rows)
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9.2.2. Tables and Queries

It is about time to introduce our own tables and data so that we can approach SQL’s main features. SQL
consists of (at least) two languages: a language to define relational data models (DDL - Data Definition
Language) and a language to query and manipulate the actual data contained in these tables (DML - Data
Manipulation Language).

The relational model is simple and powerful. All data is organized in tables. A table has a fixed number
of columns. The data is contained in the rows (or tuples) of the table. A row is uniquely identified by its
values (in the table’s columns). In more mathematical terms, a table is a subset of the cross product of the
column domains, where a column’s domain is the set of allowed values in the column. All operations
selecting and combining tables can be interpreted as operations on these sets (the "relations").

As our first relation, let’s define a table containing first name, last name, and birthday of our friends.

sample=> create table friend (
sample(> firstname char(20),
sample(> lastname char(20),
sample(> birthday date);
CREATE

A table is defined with thecreate table command followed by the name of the table and the list of
column definitions as a comma separated list in parentheses. Each column definition consists of the
column’s name, its type, and optionally additional flags controlling the behavior of the column. In our
example we use two types:char(20) for strings of up to 20 characters anddate for dates (just the date,
no time).

We can now insert tuples into this table using SQL’sinsert command.

sample=> insert into friend values (’Homer’, ’Simpson’, ’15/05/1950’);
INSERT 16576 1
sample=> insert into friend values (’Bart’, ’Simpson’, ’20/07/1990’);
INSERT 16577 1

The first number in PostgreSQL’s response if the object id supplied by PostgreSQL. This id is a
PostgreSQL specific features we can forget for now. The second number is the number of rows inserted
into the table.

Now that we have some data available, we can
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Besides Common Lisp, Scheme is the second major Lisp dialect. It was developed by Gerald Jay
Sussman and Guy Steele in 1975. Like Common Lisp, Scheme went through a standardization process
which lead to an IEEE and ANSI standard in 1991. Scheme can be seen as a lightweight version of
Common Lisp (although this is a little bit misleading, since Common Lisp was defined later and adopted
some of Scheme’s features). Scheme carries less of the historical burden which lead to some of Common
Lisp’s less obvious features (or quirks). The main advantages when compared to Common Lisp are a
more consistent syntax and the uniform treatment of functions and other values (that is, Scheme is a one
cell Lisp implementation). On the other hand, Scheme is lacking the comprehensive standard library of
Common Lisp including the object oriented extension CLOS.

The current standard document is the fifth revision of the report on Scheme, or R5RS for short.

10.1. Software and Installation

For this chapter we are using MzScheme (http://www.plt-scheme.org/software/mzscheme/) on Linux,
one of the PLT () implementations of Scheme. If you prefer a graphical development environment, you
can equivalently use DrScheme (http://www.drscheme.org), whose Windows version comes with a
convenient installer and graphical user interface.

Startingmzscheme takes us to the interactive shell, which we will use to explore the Scheme language.

ahohmann@kermit:~$ mzscheme
Welcome to MzScheme version 204, Copyright (c) 1995-2003 PLT
>

10.2. Quick Tour

10.2.1. Expressions

Like Lisp, Scheme is a functional language with some procedural elements. Therefore, we start our
investigation with a number of expressions entered at the interactive MzScheme prompt.

> "Hello World"
"Hello World"
> (display "Hello World\n")
Hello World
> (+ 4 5 6)
15
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The interactive shell evaluates the expression and displays the result (in case there is any). The first
expression is a string constant which evaluates to itself. The result is shown with the surrounding double
quotes indicating the string constant.

The second expression is a function call that writes our message to standard output. Scheme inherits its
syntax from Lisp. An expression is either a literal or a list of expressions enclosed in parentheses. And as
in Lisp, these S-expressions are evaluated by interpreting the first expression (the head of the list) as a
prefix operator to be applied to the remaining expressions of the list (its tail). In the example, the built-in
display function is applied to our message string. In contrast to the first example, the output is the result
of the side effect of the function call. The result of the expression is empty and therefore not displayed.

The third example exemplifies one of the advantages of the simple but powerful S-expression syntax:
many functions (such as the arithmetic operators) can be applied to an arbitrary number of arguments.

Scheme has a well designed set of numerical types including arbitary long integers, rationals, floating
point numbers. We can also construct complex numbers on top of these types.

> (exp 1)
2.718281828459045
> (expt 2 4)
16
> (expt 2 200)
1606938044258990275541962092341162602522202993782792835301376
> (sqrt -1)
0+1i
> (+ 1/3 1/2)
5/6
> (/ 5 2)
5/2
> (quotient 5 2)
2
> (remainder 5 2)
1
> (* 1/2 -3+2i)
-3/2+1i
> (* 1.5 -3+2i)
-4.5+3.0i

Note how the use of the operators- , +, and/ as part of the number literals lets us express all these
different types in a natural way.

Scheme always tries to find the "best" type for the result of an expression. Dividing two integers, for
example, results in a rational. Multiplying a complex integer with a rational, we obtain a complex
rational number. Only if an operand is a floating point number or the expression results in an irrational
number such asexp 1 , the result is a floating point (and therefore inexact) number.
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Boolean expression work as expected (once we get used to the prefix notation) with#t and#f denoting
the boolean literals true and false.

> (and (> 2 1) (< 1.5 2.0))
#t
> (not #t)
#f

The Scheme standard also guarantees a number of useful string and character functions. Character
literals start with#\ followed by the character itself.

> (string-length "blah")
4
> (string-ref "blah" 2)
#\a
> (string=? "blah" "blub")
#f
> (string<? "blah" "Blub")
#f
> (string-ci<? "blah" "Blub")
#t
> (string->number "123")
123
> (string->number "100" 16)
256
> (string-append "blah" "blub")
"blahblub"
> (substring "blah" 1 3)
"la"

Two things are worth pointing out. First, the use of the question mark and the arrow-> as part of the
function name to indicate the meaning of the function: Predicates such as the string comparisons always
end with a question mark, and conversion functions use the arrow to denote what is being converted.
Second, the indexing of strings (and all other sequences): indexes start with zero and use the half-open
interval semantics just like Python (ok, Scheme was first), that is,(substring "blah" 1 3) is
equivalent to Python’s"blah"[1:3] .

In case you have not guessed it already: the string comparison suffix-ci stands for "case insensitive".

We can bind a value to a symbol in the global environment with thedefine command.

> (define x 1.5)
> (* 2 x)
3.0

define is an example of astructure(also called "special form" like in Common Lisp) which looks like a
function, but is actually implemented directly by the Scheme interpreter, because the functionality can
not be expressed by a normal Scheme function.
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Scheme has three different kinds of conditional expressions:if , cond , andcase . Theif expression
chooses one of two alternatives depending on a condition,cond generalized this to multiple conditions
and alternatives, and thecase selects an alternative by checking if the discrimator is contained in the
associated list.

> (define x 3)
> (if (< x 10) "small" "big")
"small"
> (cond

((< x 0) "negative")
((= x 0) "zero")
(else "positive"))

"positive"
> (case x

((1 2) "small")
((3 4) "medium")
(else "big"))

"medium"

10.2.2. Functions

Naturally, functions play a central role in a functional language, and Scheme really treats them as first
class citizens. In contrast to Common Lisp, Scheme is a single-cell Lisp dialect, that is, a symbol is
bound to a value which may be an expression or a function.

One way to define a function is to bind a symbol to a lambda expression (an anonymous function).

> (define times2 (lambda (x) (* 2 x)))
> (times2 55)
110

lambda is a special form which takes a formal parameter list and an expression and returns the
associated function object.

As a shortcut, Scheme allows us to define the function directly usingdefine followed by the signature
(name and arguments) and expression of the function.

> (define (times2 x) (* 2 x))
> (times2 55)
110

Of course, function definitions can be recursive.
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> (define (fac n) (if (< n 2) 1 (* n (fac (- n 1)))))
> (fac 5)
120

We can also define functions with variable argument lists. Normally, the arguments passed to a function
are bound to the formal parameters defined in the function definition one by one. We can accept an
arbitrary number of arguments by separating the last formal parameter with a period. When the function
is called, the arguments which can not be bound to the "normal" formal parameters (before the period)
will be bound as a list to this additional formal parameter.

> (define (show-args first-arg . more-args)
(display first-arg) (newline)
(display more-args) (newline))

> (show-args 1 2 3 4)
1
(2 3 4)

Theshow-args function also demonstrates that a function definition can consist of multiple expressions
which will be evaluated in sequence and the result of the last expression will be returned as the result of
the function.

> (define (blah) 1 2 3)
> (blah)
3

Since functions are treated just like any other value, defining higher order functions (also called "meta
procedures" in Scheme) is straight forward.

> (define (compose f g) (lambda args (f (apply g args))))
> ((compose times2 times2) 4)
16

Here we use the built-inapply function which applies (surprise) a function to a list of arguments.

10.2.3. Collections

There are three built-in collection types: lists, vectors, and pairs. Lists we have used already throughout
this chapter since they are not only a collection type, but also the base of Scheme’s expression syntax.
Vectors are similar to lists, but optimized for random access. Pairs combine two values and are also the
building block of lists.

Pairs follow the Lisp tradition: they are constructed with thecons function, and can be taken apart with
thecar (head), andcdr (tail) function.
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> (define p (cons "a" "b"))
> (car p)
"a"
> (cdr p)
"b"

As we have seen, lists literals are sequences of expressions separated by white space and enclosed in
parentheses. Since they are by default evaluated as expressions, we have to quote them to obtain the lists
as such.

> ’(1 2 3)
(1 2 3)
> ’("a" \#b 37)
("a" |#b| 37)

Internally, lists are nested pairs, or more precisely, a list is either empty (() ) or a pair whose second
element is a list. Therefore, the list syntax is just a shortcut for a nested pair structure and we can apply
the pair functions to obtain the head and tail of a list.

> (cons 1 ())
(1)
> (cons 1 (cons 2 ()))
(1 2)
> (cons "a" ’("b" "c"))
("a" "b" "c")
> (car ’(1 2 3))
1
> (cdr ’(1 2 3))
(2 3)

As a generalization, we can combine the lettersa andd betweenc andr to retrieve the n-th element at
the beginning or end of the list.

> (cadr ’(1 2 3 4 5))
2
> (caddr ’(1 2 3 4 5))
3
> (caar ’((1 2 3) 4 5))
1
> (cdar ’((1 2 3) 4 5))
(2 3)
> (cadar ’((1 2 3) 4 5))
2

Besides these primitive list functions, we are a number of useful list functions in the standard.

> (length ’(1 2 3))
3
> (reverse ’(1 2 3))
(3 2 1)
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> (append ’(1 2) ’(3 4))
(1 2 3 4)
> (list-ref ’(1 2 3 4) 2)
3
> (member "a" ’(1 "a" 5.5))
("a" 5.5)
> (member "b" ’(1 "a" 5.5))
#f

Note that themember function returns the sublist starting with the element we look for or false if it is not
contained in the list.

As an example of a higher order function, we have a look at themap function which applies a function to
each element in a list and returns the list of the results.

> (map times2 ’(1 2 3))
(2 4 6)
> (map (lambda (x) (* 2 x)) ’(1 2 3))
(2 4 6)

Here we appreciate again the simple handling of functions as values. The standard does not define many
higher order list functions, but most Scheme implementation come with a library containing the usual
functions we have met with in the previous chapters. To use these functions with MzScheme, we first
have to load the list librarylist.ss .

> (require (lib "list.ss"))
> (filter odd? ’(1 2 3 4 5))
(1 3 5)
> (foldl + 10 ’(1 2 3 4))
20
> (quicksort ’(5 3 7 2 4 1 8) <)
(1 2 3 4 5 7 8)

Vector literals look like lists following a# sign. Their main characteristic is the efficient access to
individual elements by index using thevector-ref andvector-set! functions.

> #(1 2 3 4)
#4(1 2 3 4)
> (define v ’#(1 2 3 4))
> (vector-length v)
4
> (vector-ref v 2)
3
> (vector-set! v 2 55)
> v
#4(1 2 55 4)

120



Chapter 10. Scheme

10.3. More Features

10.3.1. Objects

Standard Scheme has no concept of data structures (or even classes) as we know it from "traditional"
programming languages. The only built-in data structures are the collection types pair, list (being a
special case of pair), and vector. Nonetheless, there are surprisingly simple ways to implement abstract
data types in Scheme.

The starting point is the observation that each function has its own frame which contains the local
variables defined in the function. We have also seen, that functions can return other functions which keep
references to the frame of the original function. Combining these two elements, we can use the frame of
a function as a structure holding the state of an object. The "trick" is to return a method dispatcher
function.

> (define (make-account balance)
(define (withdraw amount)

(set! balance (- balance amount))
balance)

(define (deposit amount)
(set! balance (+ balance amount))
balance)

(define (dispatch method)
(cond ((eq? method ’withdraw) withdraw)

((eq? method ’deposit) deposit)))
dispatch)

> (define account (make-account 100))
> ((account ’deposit) 25)
125
> ((account ’withdraw) 50)
75

The initial balance is stored in the local frame of the constructor functionmake-account . Within this
function we define two functions, the "methods"withdraw anddeposit , which manipulate the
balance. Next we define the method dispatcher functiondispatch which just return the method function
associated with the given method symbol. This method dispatcher is return as our account "object". The
state of the object is contained in the frame continues to exist, since it is used by the returned function.

We can improve the method call syntax by not returning the dispatch function itself, but a function
applying it to the given arguments.

> (define (make-account balance)
(define (withdraw amount)

(set! balance (- balance amount))
balance)

(define (deposit amount)
(set! balance (+ balance amount))
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balance)
(define (dispatch method)

(cond ((eq? method ’withdraw) withdraw)
((eq? method ’deposit) deposit)))

(lambda (method . args) (apply (dispatch method) args)))
> (define account (make-account 100))
> (account ’deposit 25)
125
> (account ’withdraw 50)
75
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Objective C is a relatively small object oriented extension of C. The model for the object oriented
features is Smalltalk (in contrast to C++ which combines C with Simula’s classes). It was developed by
Brad Cox and the StepStone corporation in the early 1980’s. The biggest applications written in
Objective C are probably NeXTstep/OpenStep (which now turned into Apple’s Mac OS X) and
WebObjects, an early and much acclaimed web application server also developed by NEXT and now
owned by Apple. The developers I know who used WebObjects and Objective C keep raving about the
much more elegant and powerful language when compared to C++. Enough reasons to have a closer look
at Objective C.

11.1. Software and Installation

The GNU compilergcc supports Objective C. It is also the one used by the Apple system. The compiler
automatically recognizes the.m suffix of an Objective C source file. If you use the emacs editor, it will
also automatically use the Object C major mode for editing.m files. For the examples, I’m usinggcc

version 3.0 on a Linux (Debian) system. To compile the test programs, we simply applygcc to the
source file and obtain the standard UNIX executablea.out (of course, you can also choose another
name for the executable using the-o option). On some systems, you may need to add the libraries for
Objective C and threads manually using the linker flags-lobjc -lpthread .

11.2. Quick Tour

11.2.1. Objects and Classes

Let’s start with a simple class demonstrating the syntax added to the C language. Like C++, Objective C
separates the interface definition of a class from the implementation. Here is the interface for our familiar
Person class. Ideally, this interface is put into a separate file, e.g.,Person.h , so that other classes can
include the declaration just like any other C header file. But Objective C does not enforce any file policy
and we can keep multiple interfaces and implementations in a single file.

#include <Object.h>

@interface Person : Object {
const char* name;
int age;

}
- init;
- (void)display;
- (const char*)name;
- name: (const char*)aName;
@end
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The interface definition starts with@interface and ends with@end. All Objective C directives use
keywords starting with an "at" sign@. Next we see the name of the class and the name of the base class
separated by a colon. Here, we use the base classObject which is part of GNU’s Objective C
environment. The class names are followed by a block of variables which looks like the body of a C
structure. In fact, these fields are the instance variables of the class. The remaining lines contain the
decisive new features. The minus sign indicates an instance method (as opposed to a class method which
starts with a plus sign). The method declarations use a syntax which combines Smalltalk’s message
declaration with C types. The first method is has no argument and returns the object itself (the default
like in Smalltalk). Thedisplay method does not return anything. The next two methods are the accessor
methods for the attributename. The getter(const char*)name has no argument and returns a C string.
The setter takes a C stringaNameas an argument and likeinit returns the object itself. As usual for C,
the declarations are determined with a semicolon. Next, let’s look at the implementation of the class.

@implementation Person
- init {

name = "Homer";
age = 55;

}
- (void)display {

printf("name=%s, age=%d\n", name, age);
}
- (const char*)name { return name; }
- name: (const char*)aName { name = aName; }
@end

In analogy to the interface, the implementation is enclosed in a pair of@implementation and@end

directives. All the information defined in the interface does not have to be repeated anymore (but it can,
e.g., to define initial values for the instance variables). The main part of the implementation defines the
methods. Again, the syntax combines Smalltalk with C. For each method, the signature copied from the
interface is followed by a C block of statements. The statements can access the instance variables of the
class directly.

Now that we have defined ourPerson class, let’s try and use it.

main() {
Person* person = [[Person alloc] init];
[person display];
printf("name=%s\n", [person name]);
[person name: "Frank"];
printf("name=%s\n", [person name]);
[person free];

}

name=Homer, age=55
name=Homer
name=Frank

With our Smalltalk background the new syntax is not hard to follow.1 Objective C allows us to use
Smalltalk’s message passing enclosed in square brackets anywhere in the C code. The first statement
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sends the built-inalloc message to thePerson class object which return a new empty instance of
Person . We then pass theinit message to this new object which causes our initialization code to be
executed. The result is the initializedPerson instance which can be assigned to aPerson pointer. The
next line sends thedisplay message to this new instance printing name and age of the person. Next, we
call the getter for the attributename as part of theprintf statement. As an example of argument
passing, the new nameFrank is passed with the message selectorname to the person object. We then
print the name again to see if it has really been changed. Finally, the memory allocated for the person
object is returned to the operating system using thefree message defined in theObject class.

11.2.2. Message Passing and Inheritance

The similarities to Smalltalk are not only syntactical. The semantics are very similar as well. When a
message is passed to an object, the system decides at run-time which method to call. It does not need to
be known at compile-time which messages an object understands. As we will see, this is in sharp contrast
to the other object oriented members of the C family which rely on compile-time method dispatching.

The messaging becomes clearer if we replace the pointer typePerson* by the generic object identifier
id .

main() {
id person = [[Person alloc] init];
[person display];
printf("name=%s\n", [person name]);
[person name: "Frank"];
printf("name=%s\n", [person name]);
[id free];

}

Now, the program does not know the type ofperson at compile-time anymore, but the program behaves
exactly the same. The main difference is that the first version using the explicit typePerson* will be
checked at compile-time. If we try to call a message aPerson does not respond to, we will get a
compile-time error. Using the genericid , the problems shows only at run-time.

Just like Smalltalk, a method can send a message to itself or its superclass usingself andsuper ,
respectively. The latter is particularly useful for the initialization methods.

@interface Employee : Person {
int number;

}
- (int)number;
}
@end

@implementation Employee
- init {

[super init];
number = 100;
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}
- (void)display {

[super display];
printf(", number=%d", [self number]);

}
- (int)number { return number; }
@end

main() {
id employee = [[Employee alloc] init];
[employee display];
[employee free];

}

name=Homer, age=55, number=100

11.2.3. Categories and Protocols

In Smalltalk we were able to extend an existing class by simply adding a new method to it. In Objective
C, an extension of an existing class is defined using a new interface and implementation with the same
class name and marking it with a so-called category. The category name follows the class name in
parentheses. The next example adds a getter for the age attribute.

@interface Person (Accessor)
- (int)age;
@end

@implementation Person (Accessor)
- (int)age { return age; }
@end

main() {
id employee = [[Employee alloc] init];
printf("age=%d", [employee age]);

}

This category adds the getter method to thePerson class and all its subclasses. As in Smalltalk, this
feature avoids the utility classes found in less dynamic object oriented languages. Note that the new
methods have access to the attributes just like the original methods, but is not possible to add new
attributes to a class.

Objective C’s interfaces correspond to classes in the other object oriented languages of the C family. But
there is also the option to define a pure interface, that is, a collection of method signatures which other
classes can implement. In Objective C this is called a protocol. As an example, we encapsulate the ability
to display oneself as aDisplayable protocol.

@protocol
- (void)display;
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}

A class can list the protocols it adopts in angle brackets after the superclass.

@interface Person : Object <Displayable>
...
@end

main() {
id person = [[Person alloc] init];
printf("displayable=%d", [person conformsTo: @protocol(Displayable)]);
[person free];

}

1

At run-time we can check if a given object conforms a protocol. The@protocol directive converts the
protocol name to a protocol object which is passed with theconformsTo message. Protocols are not as
needed in a language such as Objective C or Smalltalk, since any message can be sent to any object.
However, protocols allow the Objective C compiler to do some additional type checking and thus avoid
run-time errors. To do so, the protocols an object is supposed to conform to can be explicitly mentioned
as part of the identifier type.

main() {
id <Displayable> person = [[Person alloc] init];
[person display];
[person free];

}

In this case, the compiler makes sure that the class assigned to theperson variable complies with the
protocol (or protocols) listed in angle brackets behing the id type. It also checks if the messages passed to
person are part of the protocol. Trying to pass the another message (such asage ) will cause a
compile-time error although the underlyingPerson class is able to respond to the message. The use of
protocols thus allows for the same compile-time type checking as the use of interfaces in Java or C#.

It is not unusal in object oriented systems that an existing class has to be adapted to a new protocol
defined somewhere else, for example, when interfacing with a third party library. If the original class
can’t be changed, the only solution is an adapter class which delegates the new methods to the old class.
In Objective C, a protocol can be added to an existing class by defining it in a category.

@protocol Printable
- (void)print: (FILE*)stream;
@end

@interface Person (Print) <Printable>
@end

@implementation Person (Print)
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- (void)print: (FILE*)stream {
fprintf(stream, "name=%s, age=%d", name, age);

}
@end

main() {
id <Printable> person = [[Person alloc] init];
[person print: stdout];
[(Object*)person free];

}

In this example, we define a new protocolPrintable which allows for printing an object on a stream.
ThePerson is adopted to this protocol by adding the required method with the categoryPrint . Note
that we have to cast the id to anObject pointer in order to sent it thefree message, since this message
is not part of thePrintable protocol.

11.3. More Features

11.3.1. Visibility

By default, Objective C adopts Smalltalk’s visibility rule: attributes are private and method are public.
However, it also allows to override this rule using the directives@private , @protected , and@public .
All attributes or method following one of these directives aquire the associated visibility. Private access
is retricted to the class itself (and its categories), protected access to the class and its subclasses and
public access to everybody.

@interface Account : Object {
@private
int number;
@public
double balance;
}
- init: (int)aNumber;
@end

@implementation Account
- init: (int)aNumber {

number = aNumber;
balance = 0;

}
@end

main() {
Account* account = [[Account alloc] init: 123];
printf("balance=%f", account->balance);

}
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A public instance variable can be accessed from outside the class just like an element of a C structure,
but the object needs to be statically typed. In practice, public instance variables are hardly used, and in
most cases the default visibility rule works just fine.

11.3.2. The Object Class

Every Objective C environment is shipped with a base class which provides common behavior for all
objects. The GNU compiler offers the theObject , and the OpenStep/Mac OS X system has the
NSObject class. Both provide a large number of methods covering memory management (alloc, free,
copy), comparison (isEqual, compare, hash), and access to the underlying class and messaging.
NSObject adds amoung other things a reference counting interface which provides a simple memory
management scheme.

As an example of the meta information which is available at run-time, you can ask an object for its class
or check if it belongs to a class or one of its subclasses.

main() {
id employee = [[Employee alloc] init];
printf("class=%s\n", [[employee class] name]);
printf("is kind of Person=%d\n",

[employee isKindOfClassNamed: "Person"]);
printf("is member of Person=%d\n",

[employee isMemberOfClassNamed: "Person"]);
}

class=Employee
is kind of Person=1
is member of Person=0

SinceEmployee is derived fromPerson , the "is kind of" relationship is satisfied, but theemployee is
not a member of thePerson class.

Since the class information is available at run-time, it is also possible to vary the message itself at
run-time, that is, to determine the message selector dynamically.

main() {
id person = [[Person alloc] init];
SEL selector = @selector(display);
[person perform: selector];
[person free];

}

The@selector directive gives us the selector object for a selector name, and theperform: method
calls the messaging mechanism directly with this selector.
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11.3.3. Arrays

Object oriented systems thrive on their libraries, and Objective C is no exception. The combination of
static types on the one hand and dynamic features on the other (including extending existing classes)
provide a good foundation for powerful libraries. The NeXTStep/OpenStep/OS-X system astheexample
for an Objective C framework provides classes covering everything from basic collections and operating
system function to graphical user interfaces. We can only give a first glimpse here using the GNU’s
GNUStep implementation.

Since GNUStep is not part of the standardgcc installation, we have to make sure that the libraries are
known to the compiler and linker. The easiest way to accomplish this is to use GNUStep’s make system.
Here is theGNUmakefile for the example below.

GNUSTEP_INSTALLATION_DIR = $(GNUSTEP_SYSTEM_ROOT)
GNUSTEP_MAKEFILES = $(GNUSTEP_SYSTEM_ROOT)/Makefiles

include $(GNUSTEP_MAKEFILES)/common.make

# The tools to be compiled
TEST_TOOL_NAME = sample

# The Objective-C source files to be compiled
sample_OBJC_FILES = sample.m

SRCS = $(TEST_TOOL_NAME:=.m)
HDRS =
DIST_FILES = $(SRCS) $(HDRS) Makefile
include $(GNUSTEP_MAKEFILES)/test-tool.make

Besides demonstrating GNUStep’s array objects, the following example also introduces a number of
important GNUStep features such as memory management with "auto release pools" and string
constants.

#include <Foundation/Foundation.h>
#include <Foundation/NSString.h>
#include <Foundation/NSArray.h>

static int compare(id a, id b, void* context) {
return [a compare: b];

}

int main() {
CREATE_AUTORELEASE_POOL(pool);
NSString* name = @"Homer";
NSArray* a = [NSArray arrayWithObjects: @"one", @"two", nil];

NSLog(@"a=%@\n", a);

NSObject* obj;
NSEnumerator* enumerator = [a objectEnumerator];
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while ((obj=[enumerator nextObject])) {
NSLog (@"Next Object is: %@", obj);

}

NSMutableArray* ma = [NSMutableArray array];
[ma addObjectsFromArray: a];
[ma addObject: @"three"];
NSLog(@"ma=%@\n", ma);
[ma sortUsingFunction: compare context: nil];
NSLog(@"ma=%@\n", ma);

DESTROY(pool);
}

11.4. Discussion

Objective C is a surprisingly elegant combination of the two very different languages C and Smalltalk. It
does not take away any of the low level complexities of C (pointers, memory management, etc.), but sets
the foundation for large object oriented systems without sacrificing the benefits such as speed and
simplicity. Some unique features such as the compile time type checking combined with the ability to
add protocols to existing classes (bearing some resemblance to Haskell’s type classes) would definitely
help the other C-based object-oriented languages.

Notes
1. But the deviation from the typical C function call syntax is probably one of the reasons that

Objective C did not get as popular as C++.
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ML is a functional programming language developed in the late 1970’s at Edinburgh University. It is a
strongly typed (in contrast to Lisp) functional language with type inference as one of its main features.
Its first standard incarnation was published in 1990 (ML90), and a new version in 1997 (ML97). The
major implementations now all support ML97 which we will use for the presentation.

12.1. Software and Installation

For the introduction we are using the Moscow ML (http://www.dina.dk/~sestoft/mosml.html)
implementation of Standard ML (SML) including the little shell program mml from CarrotSoft
(http://www.carrotsoft.com/win/ml.html). To install the program, unzip both, start the mml program, and
drag the installation directory of Moscow ML from a Windows Explorer into the mml window. Starting
the mml shell, you get the following welcome message.

MosML Windows Interface v1.1 by Andrew Pontzen
Bug reports to andrew@carrotsoft.com or app26@cam.ac.uk
Latest version from www.carrotsoft.com

Moscow ML version 2.00 (June 2000)
Enter ‘quit();’ to quit.
-

You are now ready to enter the wonderful world of Standard ML on the command line. The dash "-" is
the prompt, and the response of the interpreter will be prefixed with a ">" symbol.

12.2. Quick Tour

12.2.1. Expressions

Yes, we will start with our favorite message again by entering "Hello World" and finishing the expression
with a semicolon.

- "Hello World";
> val it = "Hello World" : string

This time, we get a much more sophisticated answer. The line tells us that the symbolit has been bound
to the value "Hello World", and that this value is of typestring . The symbolit always represents the
result of the last expression evaluated in the interactive shell. As usual, let’s try simple arithmetic next.

- 4 + 5*6;
> val it = 34 : int
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- 5.0 / 2.5 + 3.0;
> val it = 5.0 : real

At least we have found a functional language which can handle arithmetic expressions with infix
operators including the right preferences. The next example shows a less convenient aspect of ML’s type
system.

- 2.5 + 1;
! Toplevel input:
! 2.5 + 1;
! ^
! Type clash: expression of type
! int
! cannot have type
! real

It looks like ML is very strict about types, since it does not even coerce an integer into a real number.
Instead, we have to tell the explicitly what we want using one of the built-in conversion functions
between integers and floating point numbers.

- real(1)
> val it = 1.0 : real
- floor(2.5)
> val it = 2 : int
- 2.5 + real(1);
> val it = 3.5 : real

Another unusual syntactical element is the tilde~ as the unary minus operator instead of the simple
minus.

- ~1.5 - 2.0;
> val it = ~3.5 : real

12.2.2. Functions

Since ML is all about functions, defining them is literally "fun".

- fun f(x) = 2*x;
> val f = fn : int -> int

The function is defined by writing down the mathematical definition after thefun keyword. As a result,
ML tells us that we have defined a function taking a single integer argument and returning another
integer. But how does ML determine thatx has to be an integer without us declaring any type in the
function definition? This is of the characteristic features of ML. It tries to deduct types from the context.
Since the literal "2" is an integer and the multiplication takes two arguments of the same numeric type,
the argumentx has to be an integer and so does the result of the function. Note that the function is just
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another value, just of typefn : int -> int . We could have defined the function as well by assigning
an anonymous function to the symbolf as follows:

- val f = fn(x) => 2*x;
> val f = fn : int -> int

The anonymous function starts with the keywordfn (which plays the role oflambda in other languages)
followed by the parameter list, and arrow=> and the expression returned by the function.

We expect a functional language to be able to deal with functions as easily as with any other value. As an
example, it should be easy to define the composition of two functions.

- fun compose(f, g) = fn x => f(g(x));
> val (’a, ’b, ’c) compose = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b

This looks tricky. First, how did we define the functioncompose? The result of applyingcompose to the
functionsf andg is an anonymous function which maps an argumentx to f(g(x)) as required. The
more difficult part is understanding ML’s response. The first thing ML can infer is thatf andg have to be
functions. Otherwise,g could not be applied tox , andg could not be applied tog(x) . Moreover, the
function f must be applicable to the return type ofg. But that’s all. We know neither the argument type
of g nor the return type off . How does ML display this information? A symbol preceded by a quote’

denotes a type variable. The answer to our definition tells us that compose is a function depending on
three types’a , ’b , and’c . 1 The function can be applied to two function arguments with the constraint
that the return type’a of the second function is identical to the argument type of the first function. The
multiplication of types on the left hand side can be interpreted as the mathematical cross product of the
two sets of functions. Alternatively, we could have defined the compose function using the basic value
syntax:

- val compose = fn (f, g) => fn x => f(g(x));
> val (’a, ’b, ’c) compose = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b

And finally, ML also supports the more readible derived form:

- fun compose(f, g) x = f(g(x));
> val (’a, ’b, ’c) compose = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b

Before moving on, we should test if the compose function does what it is supposed to do.

- fun g(x) = x + 5;
> val g = fn : int -> int
- fun f(x) = 2 * x;
> val f = fn : int -> int
- val h = compose(f, g);
> val h = fn : int -> int
- h(3);
> val it = 16 : int
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And, by the way, we could have saved all this work, since the composition is already predefined as the
compose operator "o":

- (f o g)(3);
> val it = 16 : int

As another typical feature for a functional language, let’s try recursion. This is also a good opportunity to
introduce another ML specialty: pattern matching. ML functions can be defined in a piecemeal fashion
with the alternatives separated using a vertical bar "|".

- fun fac(0) = 1
| fac(n) = n * fac(n-1);

> val fac = fn : int -> int
- fac(5);
> val it = 120 : int

ML will try to match a given argument with the pattern on the left hand side of each definition in the
order in which they appear and evaluate the right hand side of the matching rule. Using the basic syntax,
we have to tell the ML system explicitly with the keyword "rec" that we are about to define a recursive
function.

- val rec fac = fn 0 => 1
| n => n * fac(n-1);

> val fac = fn : int -> int

12.2.3. Collections

For now we have seen that it is easy to define complex functions in ML and that ML has a strong type
system which gives us compile time type checking and probably also good performance. In fact, the ML
dialect Ocaml which we will tackle in the next chapter is fighting with plain old C for the performance
crown in the great computer language shootout (http://www.bagley.org/~doug/shootout/). What we have
not seen yet are more complex data types. Because of the math look and feel, we expect at least built-in
tuples, and indeed here they are.

- val t = (1, "bla");
> val t = (1, "bla") : int * string
- #1(t);
> val it = 1 : int
- #2(t);
> val it = "bla" : string

Knowing Python, we possibly would have preferred a simple index notation to access the element of a
tuple (starting with index zero), but ML instead defines the special functions #n which fetch the n’th
element of the tuple. This will become more natural as we see that tuple are just a convenient shortcut
notation for a record.

- val joe = {name="joe", age=33};
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> val joe = {age = 33, name = "joe"} : {age : int, name : string}
- #name(joe);
> val it = "joe" : string
- #age(joe);
> val it = 33 : int
- val t = {1=1, 2="bla"};
> val t = (1, "bla") : int * string

Besides tuples and records, we also expect sequences to be part of the standard types in a functional
language. ML supports two kinds of built-in sequence types:lists are optimized for sequential access
(similar to Lisp’s lists or Java’s LinkedList), andVectorsallow for fast random access. We will first treat
lists, and then have a quick look at vectors. List literals look like Python lists.

- val l = [1, 2, 3];
> val l = [1, 2, 3] : int list
- val l = ["Joe", "John", "Mary"];
> val l = ["Joe", "John", "Mary"] : string list
- val l = [(1, "Joe"), (2, "John")];
> val l = [(1, "Joe"), (2, "John")] : (int * string) list

As you can tell from the interpreters type notifications, ML’s strong typing requires the elements in a list
to be of the same type.

- val l = [1, "Joe"];
! Toplevel input:
! val l = [1, "Joe"];
! ^^^^^
! Type clash: expression of type
! string
! cannot have type
! int

Since ML’s lists are implemented as linked structures, they share many of Lisp’s list functions, although
with a more expressive syntax. You get the head element and the tail of the list using the functions "hd"
and "tl" (corresponding to car and cdr in Lisp).

- val l = [1, 2, 3];
> val l = [1, 2, 3] : int list
- hd(l);
> val it = 1 : int
- tl(l);
> val it = [2, 3] : int list

You can also concatenate lists using the "@" operator or prepend an element in front of a list using a
double colon (corresponding to Lisp’s cons function) which complements the head and tail functions.

- [1, 2, 3] @ [4, 5, 6];
> val it = [1, 2, 3, 4, 5, 6] : int list
- 1 :: [2, 3, 4];
> val it = [1, 2, 3, 4] : int list
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The head and tail functions are hardly needed in ML, since we can exploit ML’s pattern matching and
match a list with the pattern "x::xs", that is, it head and tail. The variable names in the pattern "x::xs" are
a typical naming convention and should be read "ex" and "exes". To demonstrate that these apparently
simple operations turn out to be powerful when combined with recursion, we first define a function
which reverses a list.

- fun reverse([]) = []
| reverse(x::xs) = reverse(xs) @ [x];

> val ’a reverse = fn : ’a list -> ’a list
- reverse l;
> val it = [3, 2, 1] : int list

The first match takes care of the empty list. A non-empty list we can always split into head and tail, and
reversing is equivalent to appending the head at the reversed tail. Inserting an element into a sorted list is
not much more difficult than this:

- fun insert(x, []) = [x]
| insert(x, h::t) = if x <= h

then x::h::t
else h::insert(x, t);

> val insert = fn : int * int list -> int list

Here, the non-trivial second case compares the element to be inserted with the head of the list. If the new
element is smaller or equal, we can put it in front of the list. Otherwise, we need to insert the element
into the tail. Once we can insert, we can sort a list (although not very efficiently).

- fun sort [] = []
| sort(h::t) = insert(h, sort t);

> val sort = fn : int list -> int list
- sort([2, 5, 1, 3, 7, 2]);
> val it = [1, 2, 2, 3, 5, 7] : int list

ML also has the typical higher order list processiong functions map and reduce.

- map (fn x => 2*x) [1, 2, 3];
> val it = [2, 4, 6] : int list

Note that in contrast to Python, map takes only one argument (the function applied to all the elements in
the list) and returns the function which modifies any list. You can see this more clearly, when checking
the types of the partial expressions.

- map;
> val (’a, ’b) it = fn : (’a -> ’b) -> ’a list -> ’b list
- map (fn x => 2*x);
> val it = fn : int list -> int list

In functional jargon this is called a curried function (after Haskell B. Curry who also gave the purely
functional language Haskell its name). When defining a function, we can eiter pass the arguments as a
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tuple (uncurried form) or pass just the first argument and return a function taking the second argument
and so forth (curried form).

ML’s equivalent of Python’s reduce function is called foldr (for "fold right").

- foldr (fn (x, y) => x + y) 5 [1, 2, 3];
> val it = 11 : int

The first argument is the two argument function used to combine the values in the list, the second
(curried) argument the initial value, and the last argument the list to reduce. Formally, foldr’s type is:

- foldr;
> val (’a, ’b) it = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

Let’s turn to ML’s random access sequence, the vector. Vectors literals are similar to lists, but start with a
hash sign "#".

- val v = #[1, 2, 3];
> val v = #[1, 2, 3] : int vector

Again, we see that the collection is strongly typed. Access to vector elements or parts of vectors is index
oriented.

- open Vector;
- sub(v, 0);
> val it = 1 : int
- extract(v, 1, SOME 2);
> val it = #[2, 3] : int vector

The functionsub retrieves a single element, the functionextract a slice of the vector. Indexes start at
zero and the optional upper bound of the slice is inclusive.

The concat function concatenates a list of vectors into one big vector and the map and reduce (foldr)
functions work like their list counterparts.

- concat([#[1, 2], #[3, 4]]);
> val it = #[1, 2, 3, 4] : int vector
- map (fn x => 2*x) #[1, 2, 3];
> val it = #[2, 4, 6] : int vector
- foldr (fn (x, y) => x+y) 5 #[1, 2, 3];
> val it = 11 : int
- app (fn x => print("x=" ^ Int.toString(x) ^ "\n")) #[1, 2, 3];
x=1
x=2
x=3
> val it = () : unit
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You can also apply these functions to slices of a vector. In this case, the function has access to the
iteration index as well.

- fun printElem(i, x) = (
print(Int.toString(i)); print(": ");
print(Int.toString(x)); print("\n"));

> val printElem = fn : int * int -> unit
- appi printElem (#[1, 2, 3, 4, 5], 1, SOME 3);
1: 2
2: 3
3: 4
> val it = () : unit

12.2.4. Data Types

Up to now we have defined a lot of values including functions. Even the records were defined directly as
values. The type of these value was always inferred by the language without our declaring it. But how can
we define types ourselves? The simplest way is to define a shortcut for an existing type using the "type"
command. Here is the definition of the type associated with the simple record structure introduced above.

- type person = {name: string, age: int};
> type person = {age : int, name : string}

The type definition just binds a symbol to a type expression. We have seen the type expressions all along
in the responses of the ML system. How can we use this type? Sometimes, we have to help ML to
determine the type of a function. We do this by appending a type declaration (Pascal style) to a function
argument.

- fun name(p : person) = #name(p);
> val name = fn : {age : int, name : string} -> string
- name(joe);
> val it = "joe" : string

In this example, ML is not able to derive the type of the function "name". We have to give ML a hint
using an explicit type declarations. The definition is equivalent to using the explicit type expression; it
only saves us some typing when using the type more than once.

- fun name(p: {name: string, age: int}) = #name(p);
> val name = fn : {age : int, name : string} -> string

Combining built-in types in type expressions is useful, but it does not allow us to create new types. As an
example, think about an enumeration type representing colors or the type of a tree structure. These types
require alternatives. A color is either red or green or blue (or some other color from a finite set of colors
we want to deal with). A tree is either empty or a node whose branches are again tree structures. We
can’t express those types by combining existing types in type expressions. That’s where ML’s so-called
data types come in. They generalize the concepts of enumerations and variants (like in Pascal or C’s
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unions). An data type is defined as a sequence of alternatives, each alternative being some type. A value
belonging to the new data type belongs to one of the sub types. To tell the alternatives apart, one has to
put a so-called constructor in front of the value of the sub type. Let’s look at a few examples. The first
one defines a new data type called "color" consisting of three alternatives.

- datatype color = Red | Green | Blue ;
> New type names: =color

datatype color =
(color,{con Blue : color, con Green : color, con Red : color})
con Blue = Blue : color
con Green = Green : color
con Red = Red : color

- val c = Red;
> val c = Red : color

This is the one extreme of a data type corresponding to an enumeration. The sub types are empty or,
better, they only contain the single value "nothing". Still, there are three different kinds of nothing (red,
green, blue) and we can define color values by using the associated three constructors Red, Green, and
Blue. The constructors can also be used in patterns:

- val colorName = fn
Red => "red"

| Green => "green"
| Blue => "blue" ;

> val colorName = fn : color -> string
- colorName c ;
> val it = "red" : string

The next example demonstrates another extreme: a data type with just a single sub type (which we can’t
call alternative anymore).

- datatype person = Person of string * int ;
> New type names: =person

datatype person = (person,{con Person : string * int -> person})
con Person = fn : string * int -> person

- val joe = Person("Joe", 25);
> val joe = Person("Joe", 25) : person
- fun name(Person(name, age)) = name;
> val name = fn : person -> string
- name(joe);
> val it = "Joe" : string

The new data type "person" has a single constructor "Person" taking two arguments, a string and an
integer (representing the person’s name and age, but this is not clear from the definition of the data type).
The sub type (here the tuples consisting of a string and an integer) follows the constructor and the
keyword "of". Defining new values of type person now really looks like a constructor call. The name
function uses pattern matching again, albeit in a simple form since we have to alternative constructors.
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The next example demonstrates a data type used in the sense of a variant. Suppose we would like to store
integers and strings in a list. We can’t do this directly like in the dynamically typed languages. But we
can define a data type which contains strings and integers as sub types.

- datatype stringOrInt = I of int | S of string;
> New type names: =stringOrInt

datatype stringOrInt =
(stringOrInt, { con I : int -> stringOrInt,

con S : string -> stringOrInt})
con I = fn : int -> stringOrInt
con S = fn : string -> stringOrInt

- val l = [I(1), S("blah"), I(55)];
> val l = [I 1, S "blah", I 55] : stringOrInt list
- map (fn I(i) => Int.toString(i) | S(s) => s) l;
> val it = ["1", "blah", "55"] : string list

Data types can also be parametrized using type variables. We can generalize the previous example to
construct lists containing one of two possible types.

- datatype (’a, ’b) alt = A of ’a | B of ’b;
> New type names: =alt

datatype (’a, ’b) alt =
((’a, ’b) alt,

{con (’a, ’b) A : ’a -> (’a, ’b) alt,
con (’a, ’b) B : ’b -> (’a, ’b) alt})

con (’a, ’b) A = fn : ’a -> (’a, ’b) alt
con (’a, ’b) B = fn : ’b -> (’a, ’b) alt

- [A(1.2), B(4), A(2.34), B(5)];
> val it = [A 1.2, B 4, A 2.34, B 5] : (real, int) alt list

If there is one element of ML which convinced me immediately, it is the handling of optional results of
functions combined with pattern matching. Think about a lookup function which either returns the value
you look for or indicates in some way that it could not find any value. How can we implement this result
in the mainstream languages? Either we return a null pointer (or reference) in case the value was not
found, or we throw an exception. Both solutions have their pros and cons. Null pointers are too often not
checked leading to nasty crashes (or not much better runtime exceptions). Exceptions should be
"exceptional" and cause clumsy code when used for normal program logic. ML has a built-in data type
called "option" which is a perfect fit for a return value of a lookup function. We define it (but we don’t
have to since it is a standard data type) as

- datatype ’a option = NONE | SOME of ’a;
> New type names: =option

datatype ’a option =
(’a option,{con ’a NONE : ’a option,

con ’a SOME : ’a -> ’a option})
con ’a NONE = NONE : ’a option
con ’a SOME = fn : ’a -> ’a option
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A value of type "int option", for example, is either the value NONE or the value SOME x, where x is
some integer. The List.find function return values of type "’a option" where ’a is the type of the list
elements.

- List.find;
> val ’a it = fn : (’a -> bool) -> ’a list -> ’a option
- List.find (fn x => x > 10) [1, 3, 15, 3, 17];
> val it = SOME 15 : int option
- List.find (fn x => x > 10) [1, 3];
> val it = NONE : int option

To handle this type, we have to use pattern matching. There is no way to silently ignore a null pointer or
exception.

- fun g(NONE) = print("nothing found")
| g(SOME x) = print("found " ^ Int.toString(x));

> val g = fn : int option -> unit
- g(SOME 5);
found 5
> val it = () : unit
- g(NONE);
nothing found
> val it = () : unit
- g(List.find (fn x => x > 10) [1, 3, 15, 3, 17]);
found 15
> val it = () : unit

Defining this kind of function is as easy as handling the option return value. The pattern matching in the
calling function correponds to an if expression in the called function.

- fun f(x) = if x<0 then NONE else SOME x;
> val f = fn : int -> int option
- g(f(10));
found 10
> val it = () : unit
- g(f(0));
found 0
> val it = () : unit

The last example of a data type has to occur in any description of ML: a binary tree fined as a recursive,
parametrized data type. Sounds complicated? But it fits in one line (for clarity we use three).

- datatype ’a btree =
Empty

| Node of ’a * ’a btree * ’a btree;
> New type names: =btree

datatype ’a btree =
(’a btree,

{con ’a Empty : ’a btree,
con ’a Node : ’a * ’a btree * ’a btree -> ’a btree})

con ’a Empty = Empty : ’a btree
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con ’a Node = fn : ’a * ’a btree * ’a btree -> ’a btree

A binary tree is either empty, or it is a node consisting of a value of type’a , a left branch, and a right
branch. Both branches are binary trees of type’a again. Here are some examples:

- val p = Node(100, Empty, Empty);
> val p = Node(100, Empty, Empty) : int btree
- val q = Node(200, Empty, Empty);
> val q = Node(200, Empty, Empty) : int btree
- val r = Node(150, p, q);
> val r = Node(150, Node(100, Empty, Empty), Node(200, Empty, Empty)) :

int btree

To make our binary tree more useful, let us define lookup and insertion (the slightly more complicated
deletion you find in ML book such as[ULLMAN98] >).

- val rec lookup = fn
(x, Empty) => false

| (x, Node(y, left, right)) =>
if x < y then lookup(x, left)
else if y < x then lookup(x, right)
else true;

> val lookup = fn : int * int btree -> bool
- lookup(200, r);
> val it = true : bool
- lookup(5, r);
> val it = false : bool

Note that the algorithm works only for sorted trees, and in fact only for integer trees, since we use the
"less than" directly (we’ll fix this later when talking about structures).

- val rec insert = fn
(Empty, x) => Node(x, Empty, Empty)

| (T as Node(y, left, right), x) =>
if x < y then Node(y, insert(left, x), right)
else if y < x then Node(y, left, insert(right, x))
else T;

> val insert = fn : int btree * int -> int btree
- insert(r, 400);
> val it =

Node(150, Node(100, Empty, Empty),
Node(200, Empty, Node(400, Empty, Empty))) : int btree

- insert(r, 120);
> val it =

Node(150, Node(100, Empty, Node(120, Empty, Empty)),
Node(200, Empty, Empty)) : int btree
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12.2.5. Module System

When discussing Python, we complained about the lack of well-defined interfaces caused by the
dynamic typing. With ML, we have a very strong type system. Where are the interfaces? ML includes a
so-called module system consisting of structures, signatures, and functors. A structure is a combination
of types and functions, a signature is a "type" of a structure, and functors are functions mapping
structures to structures. In other words, we go from the ordinary level of values, types, and function to
the meta level of structures, signatures, and functors.

Since the examples become a little bit longer in this section, you are better off entering them in a file
which you can then load with theuse command as if you had typed all the code on the command line. If
the file containing the code isc:\sml\sample.sml , type:

- use "c:\sml\sample.sml";
[opening file "c:\sml\sample.sml"]
...
[closing file "c:\sml\sample.sml"]

At first sight, structures provide a namespace for types and values (including functions). We have already
used some standard structures such asInt andList . As an example of our own, let us wrap thecolor

type together with thecolorName function into a structure.

- structure Color = struct
datatype color = Red | Green | Blue;
val name = fn

Red => "red"
| Green => "green"
| Blue => "blue";

end;
> ...
- Color.name(Color.Red);
> val it = "red" : string

Since all identifiers defined in the structure have to be qualified with the name of the structure, we can
keep the names short and crisp. One of the most popular examples is a stack.

structure Stack = struct
exception Empty;
type ’a stack = ’a list;
val create = [];
fun push(s, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

We implement the stack using a list wherepush is equivalent the basic list construction operator, and
pop takes the head of the list (unless it is empty). Since the implementation is functional, thepop

function returns the popped element as well as the new stack (the tail of the origianal one).
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- val s = Stack.create;
> val ’a s = [] : ’a list
- val s = Stack.push(s, 55);
> val s = [55] : int list
- val s = Stack.push(s, 66);
> val s = [66, 55] : int list
- Stack.pop(s);
> val it = ([55], 66) : int list * int

When using the stack, we can see the internal data structure. We can even directly pass a list to the
structure’s function although the list was created by the other functions of the structure.

- Stack.pop(["blah", "blub"]);
> val it = (["blub"], "blah") : string list * string

Besides the namespace, a structure does not offer us any benefit such as encapsulation or information
hiding. How shall we define an interface for the structure which hides the internals of the
implementation? All a client needs to use the structure in a strongly typed environment such as ML is the
type information of the components in our structure. In ML, this is the provided by a signature.

signature STACK = sig
exception Empty;
type ’a stack;
val create : ’a stack;
val push : ’a stack * ’a -> ’a stack;
val pop : ’a stack -> ’a stack * ’a;

end;

A signature is a structure lifted to the type level. The two keywordssignature andsig correspond to
the ones used to define a structure,structure andstruct . The shorter name is used to define the
object, the longer one to bind a symbol to this object.

We can tell the compiler that a structure implements a given signature by adding a so-called signature
constraint to the structure. To this end, we place the signature behind the structure’s name using a colon
(like a superclass in C++).

structure Stack : STACK = struct
exception Empty;
type ’a stack = ’a list;
val create = [];
fun push(s, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

The relationship between structures and signatures is comparable to the relationship between classes and
interface in objected-oriented languages. The signature describes the interface of all the structures which
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implement the signature. Now the compiler makes sure that the structure is compliant with the signature.
Trying to compile the following definition of our stack causes a signature mismatch

structure Stack : STACK = struct
exception Empty;
type ’a stack = ’a list;
val create = [];
fun push(s, x) = x::s;

end;
...
! Signature mismatch: the module does not match the signature ...
! Missing declaration: value pop
! is specified in the signature as
! val ’a pop : ’a list -> ’a list * ’a
! but not declared in the module

Because this kind of signature constraint does not hide the implementation of the stack, it is called a
transparent signature constraint.

> val it = () : unit
- val s = Stack.create;
> val ’a s = [] : ’a list
- Stack.pop([1, 2, 3]);
> val it = ([2, 3], 1) : int list * int

Fortunately, ML97 introduces an opaque signature constraint which hides the data types of the structure.
To use this kind of constraint we only have to replace the colon by the symbol:> .

structure Stack :> STACK = struct
exception Empty;
type ’a stack = ’a list;
val create = [];
fun push(s, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

- val s = Stack.create;
> val ’a s = <stack> : ’a stack/2
- val s = Stack.push(Stack.push(s, 55), 66);
> val s = <stack> : int stack/2
- val (s, x) = Stack.pop(s);
> val s = <stack> : int stack/2

val x = 66 : int
- Stack.pop([1, 2, 3]);
! Toplevel input:
! Stack.pop([1, 2, 3]);
! ^^^^^^^^
! Type clash: expression of type
! ’a list
! cannot have type
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! ’b stack/2

ML’s first means of encapsulation is the concept of an abstract data type. It combines a datatype with
functions while hiding the actual definition of the datatype itself.

abstype ’a stack = S of ’a list with
exception Empty;
val create = S [];
fun push(S s, x) = S (x::s);
fun pop(S []) = raise Empty

| pop(S(x::s)) = (S s, x);
end;

The first part of the definition until thewith keyword is a datatype definition with thedatatype

keyword replaced byabstype . The essential declaration follows between thewith andend keywords.
From the outside, the type can only be used through the components defined in this section. Note that we
had to use a datatypeS of ’a list although’a list is already a well defined type.

- val s = create;
> val ’a s = <stack> : ’a stack
- val s = push(s, 55);
> val s = <stack> : int stack
- pop(s);
> val it = (<stack>, 55) : int stack * int
- val s = push(s, 66);
> val s = <stack> : int stack
- pop(s);
> val it = (<stack>, 66) : int stack * int
- val (s, x) = pop(s);
> val s = <stack> : int stack

val x = 66 : int
- val (s, x) = pop(s);
> val s = <stack> : int stack

val x = 55 : int
- val (s, x) = pop(s);
! Uncaught exception:
! Empty

The datatype constructorS can only be used within the declaration part of the abstract data type. It is not
visible from the outside.

- val s = S [];
! Toplevel input:
! val s = S [];
! ^
! Unbound value identifier: S

Now we have approached encapsulation and data hiding from two angles, structures and abstract data
types, the former providing namespaces and the latter hiding a datatype.
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To hide the internals of an implementation, we have to start with a signature. The relationship between
structures and signatures is comparable to the relationship between classes and interface in
objected-oriented languages. The signature describes the interface of all the structures which implement
the signature. The interface contains all the information a client needs to use the structure and hides the
rest. In a strongly typed language such as ML, a client needs to know the names and types of all the
values defined in the structure (values again including functions). It also may need to know the names of
types and exceptions required for the values. As an example, consider a functional interface (i.e., a
signature) of a stack. To keep it simple, we start with a stack of integers.

signature IntStack = sig
exception Empty;
type stack;
val create : stack;
val push : stack * int -> stack;
val pop : stack -> stack * int;

end;

A signature starts with the keywordsig and ends with the keywordend . It can be bound to a symbol
using the keywordsignature . Exceptions and types are just declared with their names. For values we
also give their types in the notation we know from ML’s answers. Let’s turn to the implementation of this
interface, a structure providing all the types and values declared in the signature.

structure ListIntStack : IntStack = struct
exception Empty;
type stack = int list;
val create = [];
fun push(s, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

The structureListIntStack implements theIntStack with a simple list. The compiler makes sure
that the structure really implements all the required types and values. If not, we get a signature mismatch
error. We can use the stack operations with any structure implementing the signature.

- val s = ListIntStack.create;
> val s = [] : int list
- val s = ListIntStack.push(s, 55);
> val s = [55] : int list
- val s = ListIntStack.push(s, 66);
> val s = [66, 55] : int list
- val (s, x) = ListIntStack.pop(s);
> val s = [55] : int list

val x = 66 : int
- val (s, x) = ListIntStack.pop([2, 3]);
> val s = [3] : int list

val x = 2 : int

However, this is not exactly what we wanted. We can still see the internal structure of the stack, and,
even worse, we can apply the functions to values defined outside like in the lastpop call.
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With ML97, opaque signatures were introduced which hide all the internals. A structure implementing a
signature in this manner uses the operator:> instead of the simple colon.

structure IntStack :> IntStack = struct
exception Empty;
type stack = int list;
val create = [];
fun push(s, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

We also change the name of the structure to the name of the signature (which is not required, but
uncommon either). When now using the structure, we don’t see anymore that it is implemented with a
list.

- val s = IntStack.create;
> val s = <stack> : stack/3
- val s = IntStack.push(s, 55);
> val s = <stack> : stack/3
- val (s, x) = IntStack.pop(s);
> val s = <stack> : stack/3

val x = 55 : int
- val (s, x) = IntStack.pop([2, 3]);
! Toplevel input:
! val (s, x) = IntStack.pop([2, 3]);
! ^^^^^
! Type clash: expression of type
! ’a list
! cannot have type
! stack/3

And consequently, we can not apply theIntStack functions to integer lists directly.

Next we would like to overcome the restriction of our stack to integers. As a first step, we generalize the
signature by introducing a type for the elements contained in the stack.

signature Stack = sig
exception Empty;
type elem;
type stack;
val create : stack;
val push : stack * elem -> stack;
val pop : stack -> stack * elem;

end;

Now we need some kind of parametrization similar to C++ templates. ML’s solution is the third element
of the module system: functors. As mentioned at the beginning of this section, a functor maps a structure
to another structure. In other words, is allows us to parametrize a structure with another one.
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signature Type = sig type elem end;

functor MakeStack(T: Type) : Stack =
struct

exception Empty;
type elem = T.elem;
type stack = T.elem list;
val create = [];
fun push(s : stack, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

Now we can apply the functor to a structure just like we would apply a function to its arguments. The
result is a new structure, in our case a stack for elements of a given type.

- structure RealStack = MakeStack(struct type elem = real end);
> ...
- val s = RealStack.create;
> val s = [] : real list
- val s = RealStack.push(s, 1.5);
> val s = [1.5] : real list

You may wonder why we have not used an opaque signature here to hide the list implementation. The
problem is that attachingStack as an opaque signature also hide theelem type with the result that we
can’t push any element on the stack. To get out of this dilemma, we need to declare the signature as part
of the functor definition.

functor MakeStack(T: Type) :>
sig

exception Empty;
type stack;
val create : stack;
val push : stack * T.elem -> stack;
val pop : stack -> stack * T.elem;

end
=

struct
exception Empty;
type stack = T.elem list;
val create = [];
fun push(s : stack, x) = x::s;
fun pop([]) = raise Empty

| pop(x::s) = (s, x);
end;

This way we an create stacks for arbitrary types with hidden implementation.

- structure RealStack = MakeStack(struct type elem = real end);
> ...
- val s = RealStack.create;
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> val s = <stack> : stack/5
- val s = RealStack.push(s, 1.5);
> val s = <stack> : stack/5
- RealStack.pop(s);
> val it = (<stack>, 1.5) : stack/5 * real

12.2.6. Procedural Features

I hope you agree by now that ML is a powerful language for functions and expressions, but can we also
do some "normal" processing such as file I/O? Yes, we can. Like Lisp, ML is not a pure functional
language. There are objects with state, mutable arrays, and even an equivalent to conventional variables
which can change their value.

Let’s start with references. Up to now we have worked without variables. Thevar statements bind
symbols to value, but the value can’t be changed. Using the same symbol again only means that we
create a new binding with a new scope. Introducing variables so late in the game clearly indicates that
they are overrated, but there are situations where they make sense. In ML, variables are implemented by
binding a symbol to a reference with some additional syntax to read and set the value of the reference.

- val i = ref 0;
> val i = ref 0 : int ref
- !i;
> val it = 0 : int
- i := 5;
> val it = () : unit
- !i;
> val it = 5 : int

We create a reference pointing to some initial value with theref function. The exclamation mark gives
us the current value of the reference, and the assignment operator:= (also used by the Pascal family)
allows us to change the value of the reference. Setting the value is a pure non-functional operation. It
returns nothing, but does all its work as a side-effect.

While a reference contains just a single value, an array is a mutable version of a vector. Applications for
this kind of data structure are obviously numerical computations on vectors and matrices, because they
call for an efficient in-place implementation.

- open Array;
> ...
- val a = array(5, 0.0);
> val a = <array> : real array
- length(a);
> val it = 5 : int
- sub(a, 3);
> val it = 0.0 : real
- update(a, 0, 1.5);

151



Chapter 12. ML

> val it = () : unit
- sub(a, 0);
> val it = 1.5 : real

All array functions are contained in theArray module which we open first. We create an array with the
array function supplying the array’s length and an initial value. This value determines the type of the
array. The functionssub andupdate fetch and set an element in the array, respectively.

There are multiple functions in theArray module which apply a function to all elements in an array. We
can, for example, print the array using a combination ofapp andprint .

- app (fn x => print (Real.toString(x) ^ " ")) a;
1.5 0.0 0.0 0.0 0.0 > val it = () : unit

We can also modify the array (or parts of it) with themodify function.

- modify (fn x => 2.0 * x) a;
> val it = () : unit
- app (fn x => print (Real.toString(x) ^ " ")) a;
3.0 0.0 0.0 0.0 0.0 > val it = () : unit

Again, theupdate andmodify functions are completely non-functional and therefore should be
handled with care.

Now that we have references at our disposal, other typical elements of procedural languages start making
sense. Thewhile loop executes an expression while a condition is satisfied. Such a loop make sense
only if the result of the condition can be changed through some side-effect. Here is a classical procedural
loop using a reference for the loop variable.

- val i = ref 0;
> val i = ref 0 : int ref
- while !i < 10 do (

print(Int.toString(!i) ^ " ");
i := !i + 1);

0 1 2 3 4 5 6 7 8 9 > val it = () : unit

This really looks like procedural code. While ML focuses on functional programming, it allows for
procedural code as well in order to solve real-life problems.

The following example reads just like procedural code.

- load "TextIO";
> val it = () : unit
- val out = TextIO.openOut("test.txt");
> val out = <outstream> : outstream
- TextIO.output(out, "this is Joe\n");
> val it = () : unit
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- TextIO.output(out, "this is John\n");
> val it = () : unit
- TextIO.closeOut(out);
> val it = () : unit
- val f = TextIO.openIn("test.txt");
> val f = <instream> : instream
- while not(TextIO.endOfStream(f)) do

print(TextIO.inputLine(f));
this is Joe
this is John
> val it = () : unit

This is also the first time we use a so-called structure. Structures in ML correspond to modules in Python
(or Modula). To use a structure we have to load it (unless we define it ourselves, but this is a different
story covered later) and then precede the function calls with the module qualifier just like in Python. In
the example, we use the standard structure TextIO which offers text-oriented input and output streams.
These streams have state and can be used like streams in a procedural language. We also notice the
procedural control statement, the while loop. Another way to implement the same iteration through the
lines in a file uses a loop function.

- fun loop(hasNext, next, f) =
while (hasNext(f)) do next(f);

> val (’a, ’b) loop = fn : (’a -> bool) * (’a -> ’b) * ’a -> unit
- val f = TextIO.openIn("test.txt");
> val f = <instream> : instream
- loop(not o TextIO.endOfStream, print o TextIO.inputLine, f);
this is Joe
this is John
> val it = () : unit

12.3. More Features

12.3.1. Collections

A more interesting example (copied from[ULLMAN98] >) is the following implementation of merge
sort. The algorithm is implemented with three functions: split, merge, and mergeSort. The split function
just splits a list into two halfs returned as a pair of lists.

- fun split(nil) = (nil, nil)
| split([a]) = ([a], nil)
| split(a::b::cs) =

let val (M,N) = split(cs) in (a::M, b::N) end;
> val ’a split = fn : ’a list -> ’a list * ’a list
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The first two lines take care of the trivial cases of an empty list and a list containing a single element. If
the list has at least two elements, we split what’s left behind the first two elements and prepend these
element to the two resulting lists. As you can tell, this is harder to describe in plain english (at least for
me) than in the two lines of ML code. Next we need the merge function which merges two ordered lists
so that the result is again an ordered list.

- fun merge(nil, M) = M
| merge(L, nil) = L
| merge(L as x::xs, M as y::ys) =

if x<y then x::merge(xs, M) else y::merge(L, ys);
> val merge = fn : int list * int list -> int list

The new feature here is the "as" expression in the last pattern. It lets us refer to the matching values in
two different ways, as lists and split into head and tail, just as needed for the merge function.

- fun mergeSort(nil) = nil
| mergeSort([a]) = [a]
| mergeSort(L) =

let val (M, N) = split(L) in
merge(mergeSort(M), mergeSort(N))

end;
> val mergeSort = fn : int list -> int list
- val l = [3, 4, 2, 7, 1];
> val l = [3, 4, 2, 7, 1] : int list
- mergeSort(l);
> val it = [1, 2, 3, 4, 7] : int list

After this preparation, the mergeSort function is not surprising anymore. ML also has the typical higher
order list processiong functions map and reduce.

- map (fn x => 2*x) [1, 2, 3];
> val it = [2, 4, 6] : int list

12.3.2. Exceptions
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Notes
1. According to[GILMORE03]>, the prime is supposed to indicate a greek letter, that is,’a stands for

the greek alpha.
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C++ was created by Bjarne Stroustrup in 1983 as an extension of C with the object oriented concepts of
Simula-67. The first commercial compiler (a preprocessor generating C code) was released in 1985.
During the the following years, many features were added or improved. The stardardization started in
1989 and the first official ISO/ANSI C++ standard was published in 1998.

In contrast to Objective C, C++ is a big extension of C. It almost doubles the number of keywords with
the implied increase in complexity (probably growing exponentially with the number of keywords). C++
not only adds object oriented features to C, but also a number of unrelated extensions such as references,
type parameters (templates), operator overloading, default arguments, and so forth. To further complicate
our presentation, even a small program uses almost all these features together (at least as soon as you use
the standard library). This makes it hard to explain our examples without getting lost in the details. This
tendency is not restricted to our presentation, but is something every C++ developers has to be aware of.

13.1. Software and Installation

As for C and Objective C, we use the GNU compilergcc , version 3.3, for the examples in this chapter.

13.2. Quick Tour

13.2.1. Hello World

C++ started as a C preprocessor (thecfront compile), but by now has become an independent
language. And although it is still possible to use plain C code and C’s standard libraries, C++ now offers
its own libraries for the most important extensions such as input/output, strings, and collections (see
Section 13.2.5>). We therefore start all over again with some simple examples.

#include <iostream>

using namespace std;

int main() {
cout << "Hello World" << endl;
return 0;

}

The code still resembles the original in C, but also shows many differences. First, the standard C++
header files don’t have a suffix (since the standard commitee could not agree on one). Second, the
namespace directive tells the compiler that we want to use the standard library without explicit qualifiers.
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C++ solves (as a late addition) C’s problem of name clashes between different libraries by introducing
namespaces. Without theusing directive, we would need to put astd:: qualifier in front of all symbols
defined in thestd namespace, in our case the symbolscout andendl from the input/output library.

#include <iostream>

int main() {
std::cout << "Hello World" << std::endl;
return 0;

}

As another observation, C++ seems to be stricter about the return type of themain function. We have to
properly definemain as an integer function and must not forget the return statement. However, the most
striking line is the print statement which does not even remotely resemble the print statements we have
seen so far.

cout << "Hello World" << endl;

It reminds more of a UNIX shell command, although the arrows point in the other direction. The analogy
is not so far fetched, since the shift operator<< indicates that objects are pushed into the standard output
streamcout . The last objectendl is the newline. C++’s relies heavily on operator overloading to
implement type-safe and efficient input and output streams. In its standard incarnation, streams are even
template types depending on the underlying character implementation and its stream related properties
(or traits). In other words, to understand the simple print statement to its full extend, we have to
understand most of the complex C++ features in the first place.

13.2.2. Some Differences between C and C++

Before diving into the heart of C++, let us mention a few minor differences between C and C++. Besides
the C-style comment/* ... */ , C++ also ignores everything starting with two slashes// until the end
of the line. This is the preferred style of comments in C++. Moreover, variables can be declared
anywhere in the code, not just at the beginning of a block. As a useful applications of this rule, a loop
variable can be declared as part of afor statement.

for (int i=0; i<n; i++) {
...

}

The scope of the variable is just thefor statement, it is not visible outside (like a number of other things,
this has changed during the evolution of C++).

Handling strings in an efficient and safe manner is a non-trivial task in C. You have to consider pointers,
buffer lengths, and memory management (who is responsible for the deletion of a string allocated on the
heap?). Therefore, the (late) addition of a standard string implementation to C++ was a most welcome
and, compared to other languages, long overdue improvement. Since we will use them in the examples
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below, we introduce strings here, although, just like the standard input/output streams, their
implementation can’t be fully understood without most of the other C++ features.

int main() {
string name = "Homer";
cout << "Hello, " << name << endl;
cout << "How are you, " + name << endl;
string ho = name.substr(0, 2).append(", ");
cout << ho << ho << ho << endl;
return 0;

}

Hello, Homer
How are you, Homer
Ho, Ho, Ho,

The most interesting line

string ho = name.substr(0, 2).append(", ");

takes the first two characters as a substring and appends the separator string", " . Besides these simple
string operations, the standard implementation contains everything from access to individual characters
to complex search methods.

In C, arguments are always passed by value. If we want a function to change a variable which is defined
outside of the function, we have to pass the pointer (i.e., the address) of the variable to the function. The
pointer is again passed by value.

static void count(int* counter) {
*counter += 1;

}

void main() {
int counter = 0;
count(&counter);

}

C++ introduces the option to pass argument by reference. Semantically, this is equivalent to passing the
pointer, but the syntax differs.

static void count(int& counter) {
counter += 1;

}

int main() {
int counter = 0;
count(counter);

}
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The actual advantage over the pointer notation is debatable, but references are used consistently
throughout the C++ standard library. To avoid expensive copying of argument objects, most read-only
arguments are passed as aconst reference. In this case, the reference notation is more readable since it
replaces the pass-by-value for performance reasons only.

static void show(const string& s) {
cout << s;

}

13.2.3. Classes

Objects and classes are C++’s first and formost addition to C. A C++ class is basically a C structure with
methods. C++ supports inheritance (including full multiple inheritance) and fine-grained visibility
control. Like Objective C, C++ separates the declaration of a class from its implementation. Here is the
declaration of thePerson class (typically to be found in a header file calledPerson.h ).

class Person {
string _name;
int _age;

public:
Person(const string& name, int age);

const string& name() const;
void name(const string& name);

void printOn(ostream& out) const;
};

Apart from the manyconst keywords, this declaration does not contain any surprises. First, we define
the two attributes_name andage . The default visibility in a class is private, so that these attributes will
be visible inside of the class only. All the methods are defined with public visibility as indicated by the
public: directive. Similar to Objective C, a visibility directive is valid until overridden by a new one.
The first method is a constructor. It is named after the class itself and has no return value. As we will see,
constructors in C++ are initialization methods which are called automatically once the memory for an
object has been reserved.

The next two methods are the accessor methods for thename attribute. There are about as many naming
conventions for C++ as there are developers. The one we follow here uses the same name for the getter
and setter. This demonstrates C++ ability to use a method name multiple times in a class as long as the
method signatures differ. However, we can not use the same name for the attribute itself. Hence, we
follow the convention to begin attribute names with an underscore character. The last method is supposed
to print aPerson object on an output stream.

Now it is time to explain the manyconst keywords. As explained above, most C++ APIs use constant
references as an efficient replacement of passing by value. Theconst keyword behind thename()

getter and the print method indicates that calling these methods does not change the person object. Both
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these meanings ofconst play together. The compiler ensures that only constant methods are called for a
constant object reference. As an example, the name setter obtains a constant reference to a string object
(the new name). Inside of this method, we can call constant string methods of this string. Calling a
destructive (non-const) method such asappend will cause compile error.

After this lengthy explanation let’s look at the implementation of the class. C++, each method is
implemented individually by taking the method signature, qualifying method name with the class name,
and following it with the method body.1

Person::Person(const string& name, int age) :
_name(name), _age(age) {}

const string& Person::name() const { return _name; }

void Person::name(const string& name) {
_name = name;

}

void Person::printOn(ostream& out) const {
out << "name=" << _name << ", age=" << _age;

}

The only striking definition is the constructor which uses initializers for the two attributes. These
initializers are put between the signature and the constructor body. When a person object is constructed,
the attributes are directly initialized with the associated constructor calls. The alternative assignment in
the constructor body

Person::Person(const string& name, int age) {
_name = name;
_age = age;

}

first initialized the name string with the default constructor and then assigns the actual name. Besides
being more efficient, initializers may be the only option in scenarios where the attribute’s class does not
support default constructor or assignment operator.

It looks like we are eventually ready to use the new class.

int main() {
Person person("Homer", 55);
person.printOn(cout);
return 0;

}

name=Homer, age=55

C++ leaves the developer many choices. One of these choices is the memory management. Like C’s
structures, instances of C++ classes can be allocated on the stack or the head. We have already used stack
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based strings in the examples above. Here, we create aPerson object on the stack by passing the
constructor arguments to theperson variable as if it were a function. Behind the scenes, C++ reserves a
block of memory for the object on the stack and calls the constructor whose signature matches the passed
arguments. The string initialization

string s = "blah";

is actually equivalent to

string s("blah");

and therefore calls the string constructor which takes a plain C-string (const char* ).

The heap-based version of the problem looks more familiar in front of the background of the previous
chapters.

int main() {
Person* person = new Person("Homer", 55);
person->printOn(cout);
delete person;
return 0;

}

The allocation is indicated by the new operator and the initialization by the constructor call. This is
complemented by thedelete operator which first calls the destructor (which we have not covered yet)
before returning the allocated memory to the operating system. We will not get into the details here, but
the new and delete operators can be changed to implement different allocation policies for particular
classes or in general.

13.2.4. Templates

13.2.5. Collections

For a long time, C++ had no standard collection library. Instead, one had to rely on either the compiler’s
collection classes (e.g., as contained in Microsoft’s MFC library) or third party libraries. There are two
mainly two ways to implement collections in C++. On the one hand, there is the Smalltalk model based
on a common base class for all elements in a collection and a hierarchy of classes modelling the different
kinds of collections. On the other hand is the template model based on parametrized functions and
classes. Both approaches have their virtues. The Smalltalk model provides clean interfaces, a simpler
implementation, and smaller executables. As a trade-off, all objects in a collection must be heap based
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and the application code requires a lot of casting which takes away some of the compile-time type safety
of C++. The template approach is truely type safe, but requires a lot more effort on the implementation
side. Also, the code bloat associated with the excessive use of templates causes long compile times and
large executables. In the end, the template model became part of the ANSI C++ standard with the
standard template library, or STL for short.

The STL applies templates in a radical way. Everything is a template. The collections themselves, their
iterators, and the functions acting on them. Although going against object oriented design, these three
elements are treated as separate entities. To start with, let’s see what a standard iteration through a
container looks like.

#include <iostream>
#include <vector>
#include <iterator>

using namespace std;

int main() {
vector<int> v;

for (int i=0; i<5; i++) v.push_back(i);

for (vector<int>::iterator i=v.begin(); i!=v.end(); ++i) {
cout << *i << ’ ’;

}
}

We construct a vector, fill it with the five integers from zero to four, and print it by iterating through the
container using STL’s standard iterator syntax. To understand the STL iterator model we need to
recollect the pointer-based loop through an array.

int main() {
const int n = 5;
int v[n];
for (int i=0; i<n; i++) v[i] = i;

int* begin = &v[0];
int* end = begin + n;

for (int* i=begin; i!=end; ++i) {
cout << *i << ’ ’;

}
}

The similarities are intentional. The standard template library was defined to accomodate the most
efficient implementation, that is, pointer arithmetic. We can easily design take the last example and cast
it into a class definition that complies with the STL algorithms.

class IntArray {
int _n;
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int* _v;
public:

IntArray(int n) : _n(n), _v(new int[n]) {}
~IntArray() { delete[] _v; }

typedef int* iterator;

iterator begin() { return _v; }
iterator end() { return _v + _n; }

int& operator[](int i) { return _v[i]; }
};

The standard STL loop looks exactly the same as for the built-in vector collection.

IntArray v(5);
for (int i=0; i<5; ++i) v[i] = i;
for (IntArray::iterator i=v.begin(); i!=v.end(); ++i) {

cout << *i << ’ ’;
}

13.3. More Features

13.3.1. Smart Pointers

In contrast to most "modern" languages covered in this book (including good old Lisp), C++ leaves
memory management to the developer. However, it is easier to hide the complexity of memory
management in C++. We have already seen the standard implementations of strings and collections that
manage the memory of the underlying data structures transparently.

13.3.2. Metaprogramming

When discussing C we have seen how to extend the C language using textual substitution with macros.
In principle, C++ templates provide the same thing in a more structured, type-safe fashion. But as it turns
out, the C++ template mechanism can be used to extend the C++ language in surprising ways.

The basic idea behind template metaprogramming is to use templates with non-type parameters as
functions which are evaluated at compile time. Here is a simple example (seeGurtovoy>) computing the
factorial function at compile time.

#include <iostream>
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template<unsigned n>
struct factorial {

static const unsigned value = n * factorial<n-1>::value;
};

template<>
struct factorial<0> {

static const unsigned value = 1;
};

int main() {
factorial<5> fac5;
std::cout << fac5.value << std::endl;
return 0;

}

--> 120

The "template function" or "metafunction"factorial is defined recursively using theunsigned

parametern. The constant class attributevalue plays the role of the return value. The important part to
notice is that the recursion is evaluated at compile time when instantiating the templatefactorial <5>.
After this example, it is not surprising that C++ templates can theoretically solve any computable
problem (that is, they are turing-complete).

In contrast to metaprogramming in the Lisp-like languages, template metaprogramming in C++ is totally
different from the normal (non-template, procedural or object-oriented) programming in C++. In fact, it
looks more like functional programming in ML using pattern matching and recursion.

13.4. Discussion

C++ is a complex beast and takes years to master, but when used properly, it offers all the power to create
object-oriented systems with ultimate performance. As a example, most of today’s desktop applications
(including, e.g., Microsoft’s office suite) are written in C++.
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Eiffel, 1 the clean, strongly typed, truely object-oriented programming language - so its supporters say.
Eiffel was designed by Bertrand Meyer in 1985 and first sold as a commercial product by Eiffel Software
(http://www.eiffel.com) (part of his company ISE - Interactive Software Engineering) in 1986. Its unique
characteristic is "Design by Contract" (DBC), the ability to define semantics conditions of methods in the
language itself, but the language contains many other interesting ideas.

14.1. Software and Installation

The Eiffel Software (http://www.eiffel.com) offers the development environment EiffelStudio for free for
non-commercial use. However, preferring open source tools, I’ve used SmartEiffel
(http://smarteiffel.loria.fr) (formerly known as SmallEiffel) on Linux. This is sufficient for our small
examples which do not require a full blown IDE, but you should be able to run the examples in
EiffelStudio as well.

SmartEiffel is part of most Linux distributions (Debian in my case), and the installation does not pose
any problem. SmartEiffel first precompiles the Eiffel code to C, and then calls the C compiler to create
the executable. This is done transparently for the Eiffel developer. All you have to do is set the
environment variableSmallEiffel to the location of the SmallEiffel library (in my case
/usr/lib/smalleiffel ) and callse-compile .

14.2. Quick Tour

14.2.1. Hello World

Eiffel is designed to build large, reliable, object-oriented systems so that even our small greeting requires
the scaffolding of a fully fledged class. To run the program, enter the code in a file calledhello.e (same
base name as the class, but lowercase), compile it withco-compile -o hello hello.e , and start the
resulting executablehello .

class HELLO
create make
feature

make is
do

print("Hello World%N")
end

end

166



Chapter 14. Eiffel

We have to grasp a number of concepts before understanding this program. First, Eiffel, like most
object-oriented languages, talks about asystemrather than a program. A system is a collection of classes
(similar to a Smalltalk image although the latter is more a collection of objects with classes being special
objects). To tell Eiffel where to start, we normally have to define a root class. Since our system contains
only theHELLOclass, this is not necessary.

Eiffel calls members of a class (attributes and methods)features. Classes mainly consist of feature
definitions introduced with the keywordfeature . In the example, we define a single method called
make which prints the message.

This does not explain yet, how the method gets executed. When starting a system, Eiffel creates an
instance of the root class, and that’s where thecreate (or synonymouslycreation ) statement comes
in. It tells the compiler that themake method is a creation procedure (in other languages called
"constructor") with no arguments which must be called when instantiating an instance of the class.
Hence, when starting our "hello" application, Eiffel creates an instance of the root classHELLOand calls
the constructor methodmake which prints the message.

Calling the constructor methodmake is just a convention. Any other name is syntactically just as fine.
Note that, as another style convention, Eiffel always uses underscore characters to separate the parts of
multi-word identifiers. Features and variables are always lowercase, classes uppercase, and constants
start with an uppercase letter.

14.2.2. Variables, Arithmetic, and Control Statements

Local variables of a method are declared in advance in the optionallocal section of a method. Eiffel
being an explicitly typed language lets us specify the type of each variable using a colon and the name of
the type.

class ARITHMETIC
creation make
feature

make is
local

i: INTEGER
x: DOUBLE

do
i := 50
x := 1.5 + 3 * 2.0^3 + i
print("x=" + x.to_string + "%N")

end
end

In the example, we use the two build-in typesINTEGERandDOUBLEwhich correspond to C’sint and
double , respectively. The variables are all initialized automatically to a default value corresponding to
their type. For numerical types, this is zero.

167



Chapter 14. Eiffel

As for the variable declaration, Eiffel follows the Pascal syntax for the assignment operator (I still
remember how unintuitive C’s use of equal operator for assignment appeared to me when moving from
Pascal/Modula to C). Arithmetical expression work as expected including the correct preferences,
automatic conversion from integer to double, and the power operator^ .

There are a few details in the print statement which we have not seen before. First, the statement prints
three strings which are concatenated with the+ operator demonstrating Eiffel’s ability to use operators
not just for numerical types. Second, we convert the floating point numberx to a string using the
to_string feature. Eiffel uses, like many other object-oriented languages, the dot notation to refer to
features of objects. For methods without parameters, we can omit the empty parameter list so that the call
looks just like the access to an attribute. Using parentheses in this case will result in a compiler warning.

The statements are not ended or separated by any special character. You only need to use a semicolon if
you try and put multiple statements in a single line. Here is the packed version of the program above.

class ARITHMETIC_PACKED creation make
feature

make is
local i: INTEGER; x: DOUBLE
do

i := 50; x := 1.5 + 3 * 2.0^3 + i
print("x=" + x.to_string + "%N")

end
end

Eiffel also has a boolean type and supports the usual boolean operators (using their proper names, not
C’s symbols).

class ARITHMETIC
creation make
feature

make is
local

x: DOUBLE
b: BOOLEAN

do
x := 100
b := x > 10 or x /= 50 and not ("blub" <= "blah")
print("b=" + b.to_string + "%N")

end
end

Here,/= is obviously not the devide-and-update operator used in the C family, but the unequal sign. Also
note that the parentheses around the string comparison are required, because thenot binds stronger than
the comparison operators.

Next to arithmetic, we have usually covered functions, which, in a purely object-oriented language such
as Eiffel, means a method returning a value.
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class FUNCTION_EXAMPLE
creation make
feature

make is
do

print("result=" + times_square(2, 3).to_string + "%N")
end

times_square(x: DOUBLE; i: INTEGER): DOUBLE is
do

Result := i * x
Result := Result * Result

end
end

Parameter and return types are specified like the types of local variables. The semicolon separating the
two arguments is only needed if they are defined on the same line. The return value is defined using the
implicit variableResult . As you can see, it can be used like any other variable. When the function is
left, the value of this variable is returned to the calling routine.

Do not try to assign a value to a formal parameter of a method. In contrast to the C family, Eiffel does not
allow this (mostly confusing) practice.

Eiffel restricts itself to a relatively small set of control statements, the usual if-then-else, a case
statement, and a loop instruction that corresponds semantically to C’sfor loop. In all three cases, the
syntax is straight forward.

class IF_EXAMPLE
creation

make
feature

make is
do

compare(4, 5)
end

compare(x: INTEGER; y: INTEGER) is
do

if x < y then
print("less")

elseif x = y then
print("equal")

else
print("greater")

end
end

end

169



Chapter 14. Eiffel

The case statement is calledinspect in Eiffel, but otherwise works as expected. The inspected
expression (and thus all the expressions it is checked agains) must be an integer or a character.

class INSPECT_EXAMPLE
creation

make
feature

make is
do

print("2=" + to_string(2))
end

to_string(x: INTEGER) : STRING is
do

inspect x
when 1 then Result := "one"
when 2 then Result := "two"
when 3 then Result := "three"
else Result := "another"
end

end
end

The loop instruction can be viewed as a readable version of C’sfor statement. You define initialization
instructions, an exit condition, and the body of the loop which is executed until the exit condition
becomes true. InSection 14.2.4> we will cover the possibility to add invariants and variants to loops as
part of the Design by Contract.

class LOOP_EXAMPLE
creation

make
feature

make is
local

i: INTEGER
do

from
i := 1

until
i > 3

loop
print("i=" + i.to_string + "%N")
i := i + 1

end
end

end
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14.2.3. Classes and Features

We had to define classes from the very beginning (even for our "Hello World" program), but for now we
have used them merely to set the context for functions doing the rest. Let us now define our standard
class example, a person, in Eiffel.

class PERSON
creation

make
feature

make(a_name: STRING, an_age: INTEGER) is
do

name := a_name
age := an_age

end

to_string: STRING is
do

Result := "name=" + name + ", age=" + age.to_string
end;

feature
name: STRING
age: INTEGER

end

The only new element are the two attributesname andage . They can be used inside the class like any
other variable. Since we have not restricted the access to these features, they are also readable from any
other class. However, you can not set an attribute from the outside, since this could cause an inconsistent
state of the object. Eiffel does not know the concept of public read-write attributes (which is not good
style in the languages supporting it). If you want other classes to be able to change an attribute, you have
to define a setter method for it.

set_name(a_name: STRING) is
do

name := a_name
end

Also note that Eiffel does not allow us to use the same name for two different features of a class even if
they have different signatures. In Eiffel, a feature name is always unique. If we would like two different
constructor methods, we have to give them different names.

Having defined thePERSONclass, we would like to create person objects. Using Eiffel, objects spring
into life with a bang (actually two).

class TEST creation make
feature

make is
local

person: PERSON;
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do
!!person.make("Homer", 55)
print("person=" + person.to_string + "%N")
print("name=" + person.name + "%N")

end
end

If you prefer a more readable syntax, you can also use the keywordcreate instead.

create person.make("Homer", 55)

The variableperson is a reference to an object of the classPERSON. At the beginning of the method, this
reference is set toVoid . We can easily verify this in the code using an assertion:

check person = Void end

The predefined constantVoid corresponds to a null pointer just like Pascal’snil or Java’snull . In
contrast to most other object-oriented languages, we do not create an object (for example, using some
factory method such anew) and assign it to a variable. Instead, Eiffel performs both in one step with the
create or "bang bang" instruction applied to the variable.

Next, let’s again derive an employee class that adds an employee number to a person.

class EMPLOYEE inherit
PERSON

rename make as person_make
redefine to_string
end

creation
make

feature
make(a_name: STRING; an_age, a_number: INTEGER) is

do
person_make(a_name, an_age)
number := a_number

end

to_string: STRING is
do

Result := Precursor + ", number=" + number.to_string
end;

feature
number: INTEGER

end

The first striking element is the extensive declaration of the inheritance in theinherit clause. Since we
would like to define a new constructor taking the employee number as an addition argument, we have to
hide the originalmake feature of thePERSONclass by renaming it toperson_make (remember that
feature names must be unique).
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We would also like to provide a new implementation of theto_string method so that the employee
number gets printed as well. To avoid simple mistakes such as an incorrect spelling of the redefined
method, we must state our intention explicitly using theredefine instruction.

Once we have prepared the class in this manner, the implementation is straight-forward. In the new
constructormake we can call the old one using its new nameperson_make . Similarly, the special name
Precursor refers to the implementation of the current method in the parent class. This is used in the
redefinition of theto_string method to add the employee number to the string provided by the
PERSONclass.

All strongly typed object-oriented languages let us declare abstract methods, that is, methods which rely
on subclasses to provide an implementation. In Eiffel, we do not talk about abstract methods, but
deferredfeatures. Here is an example defining the interface for an account with the minimal balance,
deposit, withdraw functionality.

deferred class ACCOUNT feature
balance: DOUBLE is

deferred
end

deposit(amount: DOUBLE) is
deferred
end

withdraw(amount: DOUBLE) is
deferred
end

end

Replacing thedo block by the keyworddeferred makes the features deferred. A class with at least one
deferred feature is a deferred class and has to be marked as such.

Features without arguments can be implemented as methods or as attributes (that’s why the more general
term "deferred feature" makes sense). Here is probably the simplest implementation of the account
interface.

class SIMPLE_ACCOUNT inherit
ACCOUNT

redefine balance, deposit, withdraw end
feature

balance: DOUBLE

deposit(amount: DOUBLE) is
do

balance := balance + amount
end

withdraw(amount: DOUBLE) is
do

balance := balance - amount
end
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end

Implementing a deferred class works just like inheriting from any other class. In theredefine clause,
we tell the compiler which features we are going to implement. In this implementation of the account,
thebalance feature is implemented as an attribute.

Of course, deferred classes can not be instantiated. But now that we have an implementation, we can use
the class in a test program.

class TEST creation make
feature

make is
local

account: ACCOUNT
do

!SIMPLE_ACCOUNT!account

account.deposit(10.0)
account.withdraw(5.0)
print("balance=" + account.balance.to_string + "%N")

end
end

If you did not like the "bang bang" syntax for object creation, you won’t like special case for derived
classes either. The concrete class to be instantiated is put between the two quotation marks of the object
creation instruction.

14.2.4. Design by Contract

As mentioned in the introduction, Design by Contract sets Eiffel apart from other languages. When we
look at a library, we want to know how to call a function and what a function does. The first question is
answered by the function’s signature. It tells us which parameters the function expects, and, in strongly
typed languages, which type the supplied arguments must have. The semantics of the function, however,
are normally described in comments only.

Eiffel goes one step further by giving us the means to specify some semantic information in the code. We
can define semantic conditions on the input (preconditions), output (postconditions), and state of the
object (invariants). Here is an example:

class ACCOUNT
create make
feature

make(a_minimal_balance: DOUBLE; initial_balance: DOUBLE) is
require

consistent_balance: a_minimal_balance <= initial_balance
do
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minimal_balance := a_minimal_balance
balance := initial_balance

ensure
balance_set: balance = initial_balance
minimal_balance_set: minimal_balance = a_minimal_balance

end

deposit(amount: DOUBLE) is
require

positive_amount: amount > 0
do

balance := balance + amount
ensure

balance_updated: balance = old balance + amount
end

withdraw(amount: DOUBLE) is
require

positive_amount: amount > 0
enough_money: balance - amount >= minimal_balance

do
balance := balance - amount

ensure
balance_updated: balance = old balance - amount

end

feature -- attributes
minimal_balance: DOUBLE
balance: DOUBLE

invariant
balance_ok: balance >= minimal_balance

end

The example defines an account with a constructor and the two methodsdeposit andwithdraw . Here
is a test program using the account class.

class TEST
create make
feature

make is
local

account: ACCOUNT
do

!!account.make(-1000, 0)
account.deposit(50)
account.withdraw(150)
print("balance=" + account.balance.to_string + "%N")

end
end
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The interesting part is obviously not the minimal implementation of the method, but way the class and its
method are adorned with conditions which ensure that the class works as expected. The constructor takes
two arguments, a minimal and an initial balance. These arguments only make sense if the initial balance
is not less than the minimal balance. Hence, we define apreconditionin therequire section of the
method which checks exactly that. The purpose of the constructor is to set the attributes to the given
values. This result expected by the client calling the method is verified using apostconditionin the
ensure section of the method. Similarly, we define pre- and postconditions for the two other methods.
The precondition makes sure that we never get below the minimal balance, and the postcondition check
that the balance has been updated correctly. The nice syntacticalold feature lets us refer to the value of
the balance before the method is executed.

Finally, there is theinvariant section of the class which lets us define conditions which have to be
fulfilled by an object of the class at any time. In our case, we make sure that the balance never gets below
the minimal balance.

These three elements, preconditions, postconditions, and invariants are at the heart of Eiffel’sdesign by
contract. I hope that even this simple example gives you an idea how much semantic information can be
captured with these language constructs.

Eiffel also lets us add additional checks to the program flow. The simplest one is thecheck instruction
which can be placed anywhere to check a condition (like C’sassert ).

class CHECK_EXAMPLE
creation make
feature

make is
local

n: INTEGER
do

n := 5
check

is_five: n = 5
is_positive: n > 0

end
print("checks succeeded")

end
end

As already mentioned inSection 14.2.2>, it is also possible to add special checks to loops which help to
prevent common errors such as infinite loops. Here is a program computing the greatest common divisor
of two integers using Euclid’s algorithm.

class GCD
creation make
feature

make is
do

print("gcd(25, 35)=" + gcd(25, 35).to_string + "%N")
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end

gcd(a, b: INTEGER): INTEGER is
require

a > 0
b > 0

local
x, y: INTEGER

do
from

x := a
y := b

invariant
x > 0
y > 0

variant
x.max(y)

until
x = y

loop
if x > y then

x := x - y
else

y := y - x
end

end
Result := x

end
end

A loop invariant is a condition which must be true during the whole iteration. In the example, the two
variablesx andy must stay positive. Thevariant of a loop is an integer expression which is always
positive and becomes smaller from iteration to iteration. This way we can guarantee that the loop will
end. In the Euclidian algorithm, we know that the maximum ofx andy is a good candidate for a loop
variant.

You may raise at least two questions at this point: What happens if one of the conditions is violated and
what is the performance impact of all these checks? To answer the first question, let’s try to create an
account with an invalid balance by calling!!account.make(100, 10) .

*** Error at Run Time ***: Require Assertion Violated.
*** Error at Run Time ***: consistent_balance
3 frames in current stack.
===== Bottom of run-time stack =====
System root.
Current = TEST#0x8061a60
line 4 column 2 file ./test.e
======================================
make TEST
Current = TEST#0x8061a60
account = Void
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line 8 column 4 file ./test.e
======================================
make ACCOUNT
Current = ACCOUNT#0x8061a88

[ minimal_balance = 0.000000
balance = 0.000000

]
a_minimal_balance = 100.000000
initial_balance = 10.000000
line 7 column 42 file ./account.e
===== Top of run-time stack =====
*** Error at Run Time ***: Require Assertion Violated.
*** Error at Run Time ***: consistent_balance

That’s what I call a comprehensive error description. Not only do we get the name of the violated
condition and the values of the parameters passed to the constructor method, but also the state of the
account object in question. Here is an example for the violation of a loop variant. Assume that we forget
the update of the loop variable.

class LOOP_EXAMPLE
creation make
feature

make is
local

i, n: INTEGER
do

n := 3
from

i := 1
invariant

i > 0
variant

n - i
until

i > n
loop

print("i=" + i.to_string + "%N")
end

end
end

Running this program results in the following error message.

i=1
*** Error at Run Time ***: Bad loop variant.
Loop body counter = 1 (done)
Previous Variant = 2
New Variant = 2

2 frames in current stack.
===== Bottom of run-time stack =====
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System root.
Current = LOOP_EXAMPLE#0x8061ab8
line 4 column 4 file ./loop_example.e
======================================
make LOOP_EXAMPLE
Current = LOOP_EXAMPLE#0x8061ab8
i = 1
n = 3
line 14 column 15 file ./loop_example.e
===== Top of run-time stack =====
*** Error at Run Time ***: Bad loop variant.
Loop body counter = 1 (done)
Previous Variant = 2
New Variant = 2

Again, the error message points precisely at the problem.

How do all these assertion impact the performance? Eiffel allows to switch the checks on or off without
changing the source code. This way, we can decide on a case by case basis whether the performance hit
for the evaluation of the conditions is justified or not.

14.2.5. Visibility

All features we have defined for now are public, that is, they can be accessed by any other class.
However, Eiffel allows us to restrict the visibility of features. Eiffel does not use fixed visibility modifiers
(e.g., private, protected, public). Instead, we can specify which classes are allowed to see a group of
features. Together with the special classesANYandNONE, we can express private, protected and public
visibility, but have more freedom to give other classes access as well. Here is a simple example.

class COUNTER
feature {ANY}

increment: INTEGER is
do

count := count + 1
Result := count

end
feature {COUNTER}

reset is
do

count := 0
end

feature {NONE}
count: INTEGER

end

To restrict the visibility of a feature block, we add the names of the classes which are allowed to see the
features in braces. The visibility always includes all subclasses of the specified classes. Since all
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application classes derive fromANY, the first featureincrement is public. Thereset feature is visible
by the classCOUNTERitself and all its children (protected feature in other languages). Finally the last
featurecount is restricted to the classNONE. As the name suggests, no other class can be derived from
this special class, which makes the feature private.

By default, features are public. The feature definitions in the previous sections are just shortcuts for
feature {ANY} . Besides the basic visibility rules demontrates above, we can also selectively give other
classes access to certain features (similar to thefriend mechanism in C++).

14.3. More Features

14.3.1. Expanded Types

Ideally, an object-oriented language treats all values as instances of some class. We have encountered this
uniform treatment in Python and Smalltalk, for example. However, the approach taken by these
languages comes at a high price. Even elementary value such as integers and doubles are always wrapped
into an object with the associated memory and performance overhead. Moreover, we sometimes expect
different semantics for different kinds of values. Integers, for example, should have value semantics:
When we assign an integer variable to another, we expect the integer value to be copied rather than just a
reference to an integer object.

Objective C and C++ keep the types inherited from C as they are. This way, they don’t have to pay object
overhead, but also loose the uniform treatment of values. The semantics of assignment and comparison
depend on whether we use pointers to objects or the objects themselves. In C++, we have complete
control over where the object lives (stack or heap) and how to access it (pointer or value).

From what we have seen for now, Eiffel seems to be doing the right thing. All values are objects, that is,
instances of classes. An integer is an instance of theINTEGERclass defined in the standard library. We
can access features (e.g., theto_string method) of elementary types just like of any other class.

The semantics, on the other hand, change according to the type. Elementary types such as integers and
double expose value semantics whereas the class we defined ourselved showed reference semantics.
Eiffel accomplishes this using the notion of anexpandedtype. Using an expanded type implies value
semantics for assignment. Physically, the objects are allocated effiently on the stack. We can either define
a whole class as an expanded type or single variable. The elementary type such asINTEGERandDOUBLE

are all defined as expanded classes. Here is an example of an expanded class of our own modeling pairs
of doubles.

expanded class DOUBLE_PAIR
feature

make(a_first, a_second: DOUBLE) is
do
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first := a_first
second := a_second

end

to_string: STRING is
do

Result := "(" + first.to_string + ", " + second.to_string + ")"
end

first, second: DOUBLE
end

In a client program, we can now use the expanded class just like a built-in expanded class.

class DOUBLE_PAIR_TEST creation make
feature

make is
local

a: DOUBLE_PAIR
do

a.make(2, 3)
print("a=" + a.to_string + "%N")

end
end

The variablea is not a reference to an object, but refers to the pair directly. Like an integer variable, the
pair is automatically initialized to the default value (a pair of zeros).

14.3.2. Exceptions

Exception handling is another area where Eiffel adds an interesting twist. In other object-oriented
languages we are free to raise and catch exceptions almost anywhere in the code. We can ignore an
exception with an empty catch clause, use exceptions to implement conditional logic (in which case they
become go-to statements in disguise).

As it turns out, exceptions are most properly used for the truely exceptional; events which are unexpected
and interrupt the normal flow. Eiffel takes this position and supports only two ways to handle an
exception: Either we can retry the affected operation or it fails.

Syntactically, this implies that a method has at most one exception handling block, which Eiffel calls the
rescue clause. It is the last clause of an operation (after the postconditions which could raise exceptions
as well). The following example merely demonstrates the syntax and should not be taking as a good
example for the use of exceptions, since incorrect input is not unexpected and the same logic can be
achieved with a simple loop.

class TEST inherit EXCEPTIONS creation make
feature
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make is
local

i: INTEGER
do

print("enter positive integer: ")

std_input.read_integer
i := std_input.last_integer

check i>0 end

print("i=" + i.to_string + "%N")
rescue

print("exception=" + exception.to_string)
if exception = Check_instruction then

std_input.skip_remainder_of_line
retry

end
end

end

In the "main success scenario", we ask the user to enter a positive number, he or she does so, and we
print the entered number. We use an assertion to check that the entered number is positive. If this
assertion fails, it raises an exception. The exception is caught in therescue clause which first print the
exception number.

Eiffel’s exceptions bear more resemblance with good old error codes than the exception objects found in
newer languages. By inheriting fromEXCEPTIONS, we have access to the error code in form of the
exception feature. TheEXCEPTIONSclass also contains constants for the codes of the core exceptions.
If the exception was raised by ourcheck instruction, we skip the remaining input and try again using the
retry command. Otherwise, we don’t do anything which means that the operation fails (the exception is
rethrown). We can test this behavior by interrupting the program (Ctrl-C on UNIX).

14.3.3. Operator Overloading

The only difference between an ordinary method and an operator is the name which consists of one of
the two keywordsinfix or prefix followed by the operator string. Here is an example defining the
plus operator for pairs of doubles.

infix "+" (other: DOUBLE_PAIR): DOUBLE_PAIR is
do

Result.make(first + other.first, second + other.second)
end

Once defined, we can use the operator just like a built-in one.

class DOUBLE_PAIR_TEST creation make
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feature
make is

local
a, b: DOUBLE_PAIR

do
a.make(2, 3)
b.make(3, 4)
print("a+b=" + (a+b).to_string + "%N")

end
end

14.3.4. Generic Types

Having seen the complex template syntax of C++, generic types are surprisingly simple in Eiffel. Here is
an example using the built-in array type.

class ARRAY_TEST creation make
feature

make is
local

v: ARRAY[DOUBLE]
i: ITERATOR[DOUBLE]

do
create v.make(0, 3)
v.put(1.5, 1)

print("v[1]=" + v.item(1).to_string + "%N")

i := v.get_new_iterator
from

i.start
until

i.is_off
loop

print("value=" + i.item.to_string + "%N")
i.next

end
end

end

What the angle brackets are for generic types in the C family, square brackets are in Eiffel. First, we
declare an array and an iterator of doubles. We create an array with four elements indexed from zero to
three. Theput method lets us set individual elements in the array, and theitem method is used to read
them. Alternatively we can call the@operator.

print("v @ 1=" + (v @ 1).to_string + "%N")
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Like any collection (that is, class derived fromCOLLECTION), arrays provide an iterator with the
get_new_iterator method. Eiffel’s iterators use a more conventional API than the standard template
library of C++.

As an example of our own generic type, let’s generalize our pair class to arbitrary element types.

class PAIR[G] creation make
feature

make(a_first, a_second: G) is
do

first := a_first
second := a_second

end

to_string: STRING is
do

Result := "(" + first.to_string + ", " + second.to_string + ")"
end

first, second: G
end

We just add the type parameter[G] to the class name and replace all occurences ofDOUBLEby the type
parameterG. With the new generic type, the test program looks as follows:

class PAIR_TEST creation make
feature

make is
local

a: PAIR[DOUBLE]
do

create a.make(1.5, 2.5)
print("a=" + a.to_string + "%N")

end
end

14.3.5. Agents

In the preceding chapters we saw many examples of higher order functions, that is, situations where a
function or even just a block of code is treated as an object which is passed to another function.
Strongly-typed object-oriented languages seem to have some difficulty with this concept. In Eiffel, a
(bound) method is turned into an object using theagent instruction. The resulting object is either a
FUNCTIONor aPROCEDURE, and these two generic classes offer method to execute the method contained
in the agent. As usual, it is best to see a small example first.

class TEST creation make
feature

make is
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do
apply(agent add, 44, 55)

end

add(x: DOUBLE; y: DOUBLE): DOUBLE is
do

Result := x + y
end

apply(f: FUNCTION[ANY, TUPLE[DOUBLE, DOUBLE], DOUBLE]
x: DOUBLE; y: DOUBLE) is

local
z: DOUBLE

do
z := f.item([x, y])
print("f(" + x.to_string + ", " + y.to_string + ")=")
print(z.to_string + "%N");

end
end

The most complicated part is the signature of theapply method. The first argumentf is declared as a
function (in Eiffel a method returning a value) which belongs to any class (any class derived fromANY),
takes two doubles as arguments and returns a double.

In other words,FUNCTIONis a generic type with three type parameters. The first type parameter if the
class the method to be wrapped by theFUNCTIONbelongs to. The other two type parameters describe the
signature of the method. The second type parameter is the tuple of argument types, and the third type
parameter the return type.

This also explains how the function argument is applied to the other two argumentsx andy .

z := f.item([x, y])

TheFUNCTIONobject has a methoditem which takes the arguments as a tuple, applies the wrapped
function, and returns the result. Together with theagent instruction which turns a method magically into
a function object, we can implement higher order functions.

14.4. Discussion

Eiffel really leaves the impression of the carefully designed language. It obviously helps that Eiffel does
not carry the burden of backward compatibility to another language, but could be developed from
scratch. It offers a lot of interesting answers to critical questions such as inheritance, exception handling,
generic types, not to mention the unique concept of Design by Contract.
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The syntax is for the most part consistent and therefore easy to learn. The only syntax element which
does not seem to fit is the object creation. To me, creation of objects and assignment are two different
things, and the "bang" looks like an ad hoc notation. The agent concept clearly shows Eiffel’s limits.
Classes and methods are just not considered first class objects.

Eiffel is a strongly typed language with explicit type declarations and as such requires more typing than
its dynamically typed counterparts such as Smalltalk. However, the elegant implementation of generic
types makes the strong typing a lot less painful than in other strongly typed object-oriented languages.

Notes
1. Yes, Eiffel is named after Gustave Eiffel, the engineer who created the famous tower for the 1889

world fair.
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Caml, the Categorial Abstract Machine Language, was developed at the french research institute INRIA
starting in the mid 1980’s. Besides Standard ML, it is the second main ML dialect in use. Objective Caml
(Ocaml for short) add object-oriented features to this ML dialect.

This chapter does not assume that you know Standard ML or have read the previous chapter. The
differences between the two ML dialects, although mostly syntactical, are significant enough to justify
starting from scratch. We will, however, point out the differences between SML and Ocaml as we
encounter them.

15.1. Software and Installation

The main Ocaml site (http://www.ocaml.org) gives access to the various tools and documentation. For
the examples in this chapter I am using the interactive interpreterocaml and the byte code compiler
ocamlc version 3.04 on Linux. Starting theocaml interpreter, we receive a short welcome message and
enter Ocaml’s command line.

ahohmann@kermit:~$ ocaml
Objective Caml version 3.04

#

We will begin our examples using the interpreter which gives us immediate feedback and then turn to the
compiler as soon as the programs become to large to be entered at the command line.

15.2. Quick Tour

The quick tour follows our standard route starting with simple expressions and slowly stepping up to
functions, collections, and user defined types before covering high level program structures such as
modules and classes.

15.2.1. Expressions

Since printing is an "advanced concept" in functional languages, we start with the simple "Hello World"
expression entered at the prompt of the interactive Ocaml interpreter.

# "Hello World";;
- : string = "Hello World"
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As you can see, string literals are enclosed in double quotes, and the double semicolon finished an
expression. A single semicolon (which ends an SML expression) is used in Caml as a separator (see
below). The Ocaml interpreter shows us the type and the value of the entered expression. The dash tells
us that the value was not bound to any symbol.

There is one peculiarity about arithmetical expressions: Ocaml’s operators are not overloaded for
integers and floating point numbers. The standard operators act on integers, and the floating point
operators have a period as a suffix. At least the minus sign works as expected (we don’t have to use
SML’s tilde ~ for negative numbers).

# -3+4*5;;
- : int = 17
# -3.5 +. 4.0 *. 5.0;;
- : float = 16.5

If we try and use an integer operator with a float (or vice versa), we get a type error. We can explicitly
convert between the two standard number types using the functionsint_of_float and
float_of_int .

# 1.5 + 1;;
This expression has type float but is here used with type int
# int_of_float 1.5 + 1;;
- : int = 2

Similarly, we need yet another operator to add (i.e., concatenate) strings, the hat^ .

# "Hello " ^ "World";;
- : string = "Hello World"

Concerning boolean expressions, all but thenot operator are borrowed from C.

# true || false ;;
- : bool = true
# true && false ;;
- : bool = false
# not true ;;
- : bool = false

The let command binds a symbol to an expression. Like in other functional languages, this is not be
confused with the assignment to a variable (like, e.g., in Python). The symbol is bound once and its value
does not change.

# let i = 1234;;
val i : int = 1234
# i;;
- : int = 1234
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In a functional language, almost everything is an expression. We will nonetheless treat the more
complicated ones such as functions and collections in the following sections, but the conditional
expression fits into this section quite well. It is basically a readable form of C’s question mark operator.

# let n = 50;;
val n : int = 50
# if n < 100 then "small" else "big";;
- : string = "small"

Another expression in this context is pattern matching. In its simplest form it can be viewed as the
functional form of a case statement (switch in C).

# let i = 2;;
val i : int = 2
# match i with

1 -> "one"
| 2 -> "two"
| 3 -> "three"
| n -> "more";;

- : string = "two"

The matching rules are separated with vertical bars, and each rule consists of a pattern, the arrow, and the
expression defining the result for this pattern. The patterns are evaluated one after the other until a match
is found. The result of the match expression is then the expression of the matching pattern. The "default"
clausen -> "more" gives a first glimpse at the real power of Ocaml’s pattern matching. The patternn

matches any integer.

15.2.2. Functions

There are two ways to define a function. The classical way binds a symbol to a function expression. The
function expression consists of the keywordfunction followed by the arguments, an arrow (-> ), and
the expression defining the result of the function when applied to the arguments.

# let times2 = function x -> 2*x;;
val times2 : int -> int = <fun>
# times2 55;;
- : int = 110

The second way to define a function uses a shortcut notation which lets us write down the function
expression directly.

# let times2 x = 2*x;;
val times2 : int -> int = <fun>
# times2 55;;
- : int = 110
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This syntax is especially convenient when defining functions with multiple arguments. If we check the
types of built-in functions such as the arithmetical operators, we will notice that most of them are curried
functions, that is, multiple arguments are interpreted one by one leading to a series of functions.

# (+);;
- : int -> int -> int = <fun>

If we want to define such a curried function with thefunction syntax, we end up with a rather lengthy
definition like in the following example.

# let add = function x -> function y -> x + y;;
val add : int -> int -> int = <fun>
# add 4 5;;
- : int = 9

Using the shortcut notation, the same definition reduces to

# let add x y = x + y;;
val add : int -> int -> int = <fun>

The uncurried version takes the pair of parameters as a single argument. This looks like a function with
two arguments in the traditional sense, but it is actually one tuple argument as we can tell from the
function type where the asterisk denotes the product or tuple type.

Recursive functions require therec keyword.

# let rec fac n = if n<2 then 1 else n*fac(n-1);;
val fac : int -> int = <fun>
# fac 5;;
- : int = 120

Alternatively, we could have defined the same function using pattern matching.

# let rec fac n = match n with
0 -> 1

| n -> n*fac(n-1);;
val fac : int -> int = <fun>

It does not make a big difference in this example, but it turns out to be extremely useful for functions
acting on recursively defined data structures.

Naturally, function are first class objects (or values) in a functional language such as Ocaml. We can pass
them around like any other value and define higher order functions which have functions as arguments. A
good example is again the composition of functions which can be defined in one short line.

# let compose f g x = f(g x);;
val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
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# let square x = x * x;;
val square : int -> int = <fun>
# let f = compose times2 square;;
val f : int -> int = <fun>
# f 5;;
- : int = 50

Alternatively, we can use the longer form which clearly shows the character of the higher order function.

# let compose f g = function x -> f(g(x));;
val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

Note how Ocaml chooses the most generic type for the functioncompose . The specialization takes place
only when composing two concrete functions.

15.2.3. Collections

Ocaml has the usual set of collection types we expect from a function language. We have already met the
tuple in the last section when defining functions of multiple arguments.

The most important collection is of course the (linked) list whose node structure is organized like Lisp’s
lists leading to efficient functions acting on the head and tail of the list. The list literal uses the semicolon
to separate the elements in the list. Most of the list functions are contained in theList module (more on
modules below).

# let l = [1; 2; 3];;
val l : int list = [1; 2; 3]
# List.hd l;;
- : int = 1
# List.tl l;;
- : int list = [2; 3]
# 0 :: l;;
- : int list = [0; 1; 2; 3]
# List.concat;;
- : ’a list list -> ’a list = <fun>
# List.concat [l; l];;
- : int list = [1; 2; 3; 1; 2; 3]
# List.append l l;;
- : int list = [1; 2; 3; 1; 2; 3]
# l @ l;;
- : int list = [1; 2; 3; 1; 2; 3]
# List.nth l 2;;
- : int = 3

Note that the list index used in thenth functions starts at zero. Theconcat function is equivalent to the
@operator.
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On the next higher level we find the iterator functions such as map and reduce (in Ocamlfold_left

andfold_right ).

# List.map times2 l;;
- : int list = [2; 4; 6]
# List.fold_left (+) 10 l;;
- : int = 16

There are also similar functions acting on two lists in parallel as well as functions looking for particular
elements in a list.

# List.map2 (+) l l;;
- : int list = [2; 4; 6]
# List.exists (function x -> x > 2) l;;
- : bool = true
# List.mem 2 l;;
- : bool = true
# List.mem 4 l;;
- : bool = false
# List.find (function x -> x > 2) l;;
- : int = 3
# List.filter (function x -> x > 2) l;;
- : int list = [3]

Thesort function implements merge sort. It sorts a list with respect to a comparison function (which
must return -1, zero, or +1 just like C’s compare functions).

# List.sort;;
- : (’a -> ’a -> int) -> ’a list -> ’a list = <fun>
# compare;;
- : ’a -> ’a -> int = <fun>
# (compare 1 2, compare 1 1, compare 2 1);;
- : int * int * int = -1, 0, 1
# List.sort compare [2; 1; 4; 3];;
- : int list = [1; 2; 3; 4]

So, whatever we look for in terms of list processing, we will probably find it in the standard library.
Caml’s reference manual contains concise descriptions of all the available functions. You can also used
the module browser (ocamlbrowser ) to get a quick overview of the system’s (and your own) libraries.

While we talking about lists and sorting, we can show another instructive example from the Ocaml
tutorial. It uses two mutally recursive functions (defined at once usingand ) and pattern matching to
implement insertion sort.

# let rec sort lst =
match lst with

[] -> []
| head :: tail -> insert head (sort tail)

and insert elt lst =
match lst with
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[] -> [elt]
| head :: tail ->

if elt <= head then elt :: lst else head :: insert elt tail;;
val sort : ’a list -> ’a list = <fun>
val insert : ’a -> ’a list -> ’a list = <fun>

If your main concern is fast access to an element in a collection, Ocaml’s array is the data structure of
choice. The array literal looks almost like a list, but decorates the delimiting brackets with vertical bars.
The index operator is.() .

# let a = [| 1; 2; 3 |];;
val a : int array = [|1; 2; 3|]
# let a = [| 1; 2; 3 |];;
val a : int array = [|1; 2; 3|]
# a.(1);;
- : int = 2

Arrays offer most of the collection functions we have seen for lists plus some additional functions which
exploit the indexing. As an example, we can iterate over the index and the elements in an array at the
same time.

# Array.iteri;;
- : (int -> ’a -> unit) -> ’a array -> unit = <fun>
# let f i x = Printf.printf "%d: %d\n" i x;;
val f : int -> int -> unit = <fun>
# Array.iteri f [|10; 20; 30|];;
0: 10
1: 20
2: 30
- : unit = ()
# Array.mapi (+) [|10; 20; 30|];;
- : int array = [|10; 21; 32|]

The first example also demonstrates the built-in functions for formatted output which are modeled after
C’s standard I/O library.

With arrays, we can also leave the pure functional world, since Ocaml’s arrays are mutable collections.
The assignment operator is the left arrow<- .

# a.(1) <- 55;;
- : unit = ()
# a;;
- : int array = [|1; 55; 3|]

Once we are changing objects, we can also talk about Ocaml’s dictionary type defined in theHashtbl

(hash table) module. Using it already leaves some object-based impression. Hash tables are created with
thecreate function (taking the expected size of the dictionary as an argument). The actual type is
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undetermined until the we add the first key-value pair to the dictionary. The typical put and get
operations are given asreplace anddelete .

# let h = Hashtbl.create 100;;
val h : (’_a, ’_b) Hashtbl.t = <abstr>
# Hashtbl.replace h "Homer" 55;;
- : unit = ()
# h;;
- : (string, int) Hashtbl.t = <abstr>
# Hashtbl.replace h "Bart" 11;;
- : unit = ()
# Hashtbl.find h "Bart";;
- : int = 11

There is also anadd function which overrides an already existing entry without actually deleting the old
value. Removing the entry will reveal the old value again.

# let h = Hashtbl.create 100;;
val h : (’_a, ’_b) Hashtbl.t = <abstr>
# Hashtbl.add h "Homer" 55;;
- : unit = ()
# Hashtbl.add h "Homer" 66;;
- : unit = ()
# Hashtbl.find h "Homer";;
- : int = 66
# Hashtbl.find_all h "Homer";;
- : int list = [66; 55]
# Hashtbl.remove h "Homer";;
- : unit = ()
# Hashtbl.find h "Homer";;
- : int = 55

This behavior models bindings with nested scopes (probably reflecting the Ocaml implementation).

Similar to the higher order functions for sequences, there are functions which operate on all elements in
the hash table. The iterator functioniter , for example, allows us to apply a function (as "visitor") to all
name-value pairs in the hash table.

# let h = Hashtbl.create 100;;
val h : (’_a, ’_b) Hashtbl.t = <abstr>
# Hashtbl.add h "Homer" 55;;
- : unit = ()
# Hashtbl.add h "Bart" 11;;
- : unit = ()
# let f key value = Printf.printf "%s: %d\n" key value;;
val f : string -> int -> unit = <fun>
# Hashtbl.iter f h;;
Homer: 55
Bart: 11
- : unit = ()
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15.2.4. Data Types

For now, we have worked with a number of Ocaml’s built-in types. Ocaml has two main tools to create
new types: records and variants. A record is a collection of named fields just like a record in C or other
procedural languages.

# type point = {x: int; y: int};;
type point = { x : int; y : int; }
# let add p1 p2 = {x = p1.x + p2.x; y = p1.y + p2.y};;
val add : point -> point -> point = <fun>
# let p1 = {x=10; y=20};;
val p1 : point = {x = 10; y = 20}
# p1.x;;
- : int = 10
# let p2 = {x=(-5); y=(-10)};;
val p2 : point = {x = -5; y = -10}
# add p1 p2;;
- : point = {x = 5; y = 10}

In contrast to SML, fields are accessed with the "usual" dot notation known from the descendents of C
and Pascal.

By default, records are immutable. We can not change a field of a record, but only construct completely
new ones. However, adding themutable keyword to a field allows us to change its value. Like the
mutable arrays, this feature leaves the clean functional world and lets us work with dangerous (but often
efficient) side effects.

# type person = {mutable name: string; age: int};;
type person = { mutable name : string; age : int; }
# let p = {name="Homer"; age=55};;
val p : person = {name = "Homer"; age = 55}
# p.age <- 66;;
The record field label age is not mutable
# p.name <- "Bart";;
- : unit = ()
# p;;
- : person = {name = "Bart"; age = 55}

The second tool for type creation are variant types. Variant types model alternatives.

# type color = Blue | Red | Green;;
type color = Blue | Red | Green
# Red;;
- : color = Red

Note that Ocaml uses thetype keyword for records and variants alike. We can define the equivalent of
SML’s option using a parameterized variant type.

# type ’a option = None | Some of ’a;;
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type ’a option = None | Some of ’a
# None

;;
- : ’a option = None
# Some 55;;
- : int option = Some 55

But as in SML, we don’t have to define theoption type ourselves since it is already part of Ocaml’s
standard library.

The classic example for a recursive variant type, a binary tree, looks almost like the SML equivalent.

# type ’a btree = Empty | Node of ’a * ’a btree * ’a btree;;
type ’a btree = Empty | Node of ’a * ’a btree * ’a btree

15.2.5. Module System

Ocaml’s structures bundle type and functions to consistent units. Apart from minor syntactical
differences, Ocaml follow the ML mode as defined in SML. Themodule command (replacing SML’s
structure ) gives a structure a name. Here is the Ocaml version of theColor structure.

# module Color = struct
type color = Red | Green | Blue;;
let name c = match c with

Red -> "red"
| Green -> "green"
| Blue -> "blue";;

end;;
module Color :

sig type color = Red | Green | Blue val name : color -> string end
# Color.name Color.Red;;
- : string = "red"

Signatures are to structures what types are to values. It is therefore only consistent that we bind a
signature to a name using themodule type command. Here is the interface for our extremely useful
Color structure.

# module type COLOR = sig
type color;;
val name : color -> string;;
val make : string -> color;;

end;;
module type COLOR = sig type color val name : color -> string end
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Since the actual type is hidden, we have added a constructor function which is the opposite of thename

function. We can now restrict the visibility of our structure by declaring it as an implementation of the
signature.

# module Color : COLOR = struct
type color = Red | Green | Blue;;
let name c = match c with

Red -> "red"
| Green -> "green"
| Blue -> "blue";;

let make s = match s with
"red" -> Red

| "green" -> Green
| "blue" -> Blue;;

end;;
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
""
module Color :

sig
type color = Red | Green | Blue
val name : color -> string
val make : string -> color

end

This interpreter is nice enough to warn us about the incomplete definition of themake. We will ignore
this warning until we know how to indicate errors with exception.

The actual colors are now not accessible anymore. Instead, we have to construct them from the color
strings.

# Color.Red;;
Unbound constructor Color.Red
# let c = Color.make "red";;
val c : Color.color = <abstr>
# Color.name c;;
- : string = "red"

In contrast to SML, we see only what has been declared in the signature (similar to SML’s opaque
signature constraint:> ).
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15.2.6. Objects and Classes

We have finally caught up with SML and now tackle the object-oriented ML extensions implemented in
Ocaml. Here is the first Ocaml version of our person class.

# class person = object
val name = "Homer"
val age = 55
method get_name = name
method get_age = age
method hello = "Hello, I’m " ^ name

end;;
class person :

object
method get_age : int
method get_name : string
method hello : string
val age : int
val name : string

end
# let p = new person;;
val p : person = <obj>
# p.name;;
Unbound record field label name
# p#get_name;;
- : string = "Homer"
# p#hello;;
- : string = "Hello, I’m Homer"

Of course, the class is not very satisfactory yet, because we hard-coded the values of the attributes an
have no way to change them. But at least we see the basic syntax of a class, object creation, and method
call.

Attributes are just values and methods are functions which have direct access to the objects attributes.
The attributes are not visible from the outside (unless exposed by a method), and the methods are called
with a hash# replacing the dot we are used to from other OO languages.

As it stands, we can not change the values of the attributes, not even by a method, since they are
immutable by default. So, the first option to turn the class into something useful is to make the attributes
mutable and introduce setter methods. To keep the example short, we only consider the first attribute.

# class person = object
val mutable name = ""
method get_name = name
method set_name a_name = name <- a_name
method hello = "Hello I’m " ^ name

end;;
class person :

object
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method get_name : string
method hello : string
method set_name : string -> unit
val mutable name : string

end
# let p = new person;;
val p : person = <obj>
# p#get_name;;
- : string = ""
# p#set_name "Homer";;
- : unit = ()
# p#hello;;
- : string = "Hello I’m Homer"

Although this approach works, it is following neither functional nor object-oriented best practices. What
we really would like to do is to pass the values to a constructor. In Ocaml this is accomplished by writing
the class definition as a function of the initial values. Here is the according version (again reduced to the
bare minimum).

# class person = fun a_name ->
object

val name : string = a_name
method get_name = name

end;;
class person :

string -> object method get_name : string val name : string end
# let p = new person "Homer";;
val p : person = <obj>
# p#get_name;;
- : string = "Homer"

Here we have to specify the type of the attribute, since Ocaml can’t derive it otherwise. Alternatively, we
could have declared the type of the initialization argument.

# class person = fun (a_name: string) ->
object

val name = a_name
method get_name = name

end;;
class person :

string -> object method get_name : string val name : string end

Like for function definitions, there is a shortcut syntax combining the function and class definition.

# class person (a_name: string) =
object

val name = a_name
method get_name = name

end;;
class person :

string -> object method get_name : string val name : string end
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Next, we would like to extend the person class using inheritance. To this end, we need to add an
inherit clause at the beginning of the class definition.

# class employee a_name a_no =
object

inherit person a_name
val no: int = a_no
method hello = "Hello, I’m number " ^ string_of_int(no)

end;;
class employee :

string ->
int -> object method hello : string val name : string val no : int

end
# let e = new employee "Homer" 1234;;
val e : employee = <obj>
# e#hello;;
- : string = "Hello, I’m number 1234"

If we need to refer to the original class, we can bind it to a name in the inherit clause. This name,
typically super , can then be used to call the implementation of a method in the parent class.

# class person (a_name: string) =
object

val name = a_name
method hello = "Hello, I’m " ^ name

end;;
class person : string -> object method hello : string val name : string end
# class employee (a_name: string) (a_no: int) =

object
inherit person a_name as super
val no: int = a_no
method hello = super#hello ^ ", " ^ string_of_int(no)

end;;
class employee :

string ->
int -> object method hello : string val name : string val no : int

end
# let e = new employee "Homer" 1234;;
val e : employee = <obj>
# e#hello;;
- : string = "Hello, I’m Homer, 1234"

To call a method on itself, an object has to define a name for itself (by conventionself ) following the
object keyword.

# class person name =
object (self)

val name = name
method hello = "Hello, I’m " ^ name
method print = print_string self#hello

end;;
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class person :
string ->
object method hello : string method print : unit val name : string

end
# let p = new person "Joe";;
val p : person = <obj>
# p#print;;
Hello, I’m Joe- : unit = ()

In this example, I have also exploited (lazy as I am) the possibility to use the same name for the
initialization parameter, the attribute, and the getter method.

Generic classes (classes with type parameters) are about as simple as in Eiffel. The type variable is
placed in parentheses in front of the class name.

# class [’a] point (x_init: ’a) (y_init: ’a) =
object

val x = x_init
val y = y_init
method get_x = x
method get_y = y

end;;
class [’a] point :

’a ->
’a -> object method get_x : ’a method get_y : ’a val x : ’a val y : ’a end

# let p = new point 1.5 2.5;;
val p : float point = <obj>
# p#get_x;;
- : float = 1.5

Once we know how inheritance works, we would like solid OO design and define interfaces and their
implementations. Some languages called them "abstract" (C++, Java, C#), some "deferred" (Eiffel), and
Ocaml uses the notion "virtual": methods without an implementation. The interface for our simplistic
account could look like this:

# class virtual account =
object

method virtual balance : float
method virtual deposit : float -> unit
method virtual withdraw : float -> unit

end;;
class virtual account :

object
method virtual balance : float
method virtual deposit : float -> unit
method virtual withdraw : float -> unit

end
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To indicate that an account implementation actually realizes this interface, we inherit from the virtual
class.

# class simple_account =
object

inherit account
val mutable balance = 0.0
method balance = balance
method deposit amount = balance <- balance +. amount
method withdraw amount = balance <- balance -. amount

end;;
class simple_account :

object
method balance : float
method deposit : float -> unit
method withdraw : float -> unit
val mutable balance : float

end

Clients should only see the interface, not the implementation. We therefore need another operator which
changes the type of an object to a base class (up-casting). In Ocaml, this is the:> operator.

# let a = (new simple_account :> account);;
val a : account = <obj>
# a#deposit 100.0;;
- : unit = ()
# a#withdraw 25.0;;
- : unit = ()
# a#balance;;
- : float = 75

As you see, the type ofa is account , and therefore only the interface is visible to us.

The object-oriented paradigm is well suited for functions which can be attached to one of its arguments
(which becomes the owner of the method). Symmetric functions such as comparisons are not as good a
fit and often call for unconvenient solutions. Java’sequals method, for example, takes an arbitrary
object as an argument although this object should be of the same class as the object on which the method
is called. Ocaml has an interesting solution for these binary methods. A virtual method can use the type
of the owning object which is made available through a type variable in theself clause.

# class virtual comparable =
object (_: ’a)

method virtual compare: ’a -> int
end;;

class virtual comparable : object (’a) method virtual compare : ’a -> int end
# class account balance =

object
inherit comparable
val mutable balance : float = balance
method balance = balance
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method compare other =
if balance < other#balance then -1
else if balance > other#balance then 1
else 0

end;;
class account :

float ->
object (’a)

method balance : float
method compare : ’a -> int
val mutable balance : float

end
# (new account 50.0)#compare (new account 100.0);;
- : int = -1

Object-oriented programing with Ocaml offers another interesting feature which can help us to enjoy the
advantages of objects without giving up functional reasoning: functional objects. To stay in the
functional world, we have to refrain from mutable attributes. On the other hand, we often need to change
some part of an object. Functional objects are immutable objects with methods that return chnaged
copies of the original object. Instead of altering the state of the object itself, we create a copy that
contains the change. This operation of "copying with change" is accomplished with the{< ... >}

operator. Here is an example of a "functional account".

# class account =
object

val balance = 0.0
method balance = balance
method deposit amount = {< balance = balance +. amount >}
method withdraw amount = {< balance = balance -. amount >}

end;;
class account :

object (’a)
method balance : float
method deposit : float -> ’a
method withdraw : float -> ’a
val balance : float

end
# let a = new account;;
val a : account = <obj>
# a#balance;;
- : float = 0
# let a1 = a#deposit 50.0;;
val a1 : account = <obj>
# a1#balance;;
- : float = 50
# a#balance;;
- : float = 0

The two methodsdeposit andwithdraw do not change the account object, but create a new one with
the updated balance.
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15.3. More Features

15.3.1. Exceptions

Like most modern languages, Ocaml handles error conditions using exceptions.

#

#

#

#

#

#

#
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Perl was created by Larry Wall in 1987 as a text processing language combining the power of the UNIX
tools awk, sed, shell scripts, and some C. The name stands for "Practical Extraction and Report
Language" and is also known as the "Pathologically Eclectic Rubbish Lister". It established itself quickly
as the scripting language of choice for UNIX systems. The typical applications are system administration
tools and batch jobs such as loading data from a file into a database. Due to its diverse background, Perl
had a lot of limitations and quirks in the beginning, but became a general purpose programming language
with its version 5 in 1994.

Originally I was not planning to include Perl in this book at all. Grown out of the two UNIX toolssed

andawk, which were never supposed to be used for large programs, Perl is a collection of many
individual features which are hard to describe on a few pages. But how can you ignore a language which
is used by tens if not hundreds of thousands of programmers to solve their every day problems? I include
this chapter mainly for two reasons. To give the background for the less obvious features of the scripting
language Ruby covered in the next chapter, and to enable programmers to migrate the many legacy
applications written in Perl during the last few years.

16.1. Software and Installation

For the examples, I’m using Perl version 5.6.1. Perl does not have a built-in interactive environment
which we can use to explore the language on the command line. Instead, Perl compiles a script into some
intermediate format and runs it as a whole. You can, however, run most examples with Perl’s debug
mode using the commandperl -d -e 1 .

16.2. Quick Tour

16.2.1. Expressions and Context

The hello world example is identical to Python’s version apart from the semicolon ending the print
statement.

print "Hello World";
-> Hello World

Strings can be delimited in multiple ways, each way causing the string to be interpreted differently.
Using double quotes, for example, Perl interpretes C’s escape sequences (and also interpolates variables
as we will see later on). Using single quotes, the string is interpreted literally.
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print "Hello\tWorld\n";
print ’Hello\tWorld\n’;

-> Hello World
Hello\tWorld\n

In contrast to Python,print is a function. Function calls look like in most procedural languages.
However, the parentheses around the arguments can be omitted. The following statements are equivalent.

print 123, "blah", 5.6;
print(123, "blah", 5.6);

-> 123blah5.6123blah5.6

By default, the print function does not separate the printed fields and records (that is, multiple calls to the
print function). But we can change this behavior by setting the special field and record separator
variables. To keep our examples short, we emulate Python’s print statement by setting the field separator
to a space and the record separator to a newline.

$, = " ";
$\ = "\n";
print 123, "blah", 5.6;
print(123, "blah", 5.6);

-> 123 blah 5.6
123 blah 5.6

Besides the plainprint function, Perl also supports C’s formatted printing to streams and strings.

Basic arithmetic works as expected as well. The meaning of the operators is derived from C (and awk).

print 3 + 4*5 + 2**3;
-> 31

The next examples give us a first idea of Perl’s context sensitivity.

print 10 + "10";
print 10 . "10";
print 10/3;
print 5.5 % 3;
print "ab" x 3;
print 10 x 5.5;
-> 20
1010
3.33333333333333
2
ababab
1010101010

206



Chapter 16. Perl

Perl interpretes every statement in its context and freely converts between types as required. The first
example adds the String "10" to the number 10. Since addition is defined for numbers only, the string is
implicitly converted to a number. For string concatenation (the dot operator), the opposite happens, and
the number is converted to a string. The third example shows that the division operator is using floating
point arithmetic (unless you switch to integer mode usinguse integer; ). On the other hand, the
remainder operator%is an integer operator which causes the floating point number 5.5 to be converted to
an integer before computing the remainder (in Python the same expression would return 1.5). The letterx

denotes the string replication operator which takes the string on the left hand side and the number of
times the string should be repeated on the right hand side. Because of this, the number 10 is actually
interpreted as a string and the string"5.5" as the integer 5.

As a consequence of all these implicit type conversions, more operators are required to avoid
ambiguities. For example, Perl can not overload the plus operator to also mean string concatentation,
since the expression10+"10" could be either 20 or "1010". Similarly, the string replication must use a
new operator and insist on the correct order of arguments in order to make sense of expressions like the
one given above. The same is true for the comparison operators. Perl uses the normal mathematical
comparison symbols<, <=, ==, >=, > for numbers and the Fortran-like operatorslt , le , eq, ge, gt , lt

for strings.

print "le", ("-10" le "+10")? "true" : "false";
print "<=", ("-10" <= "+10")? "true" : "false";

-> le false
<= true

In the first statement, the "less or equal" comparison is carried out for strings using thele operator. Since
the plus sign (43) comes before the minus sign (45) in the ASCII character set, the string "-10" is bigger
than the string "+10". Using the numerical<= operator, the strings are implicitly converted to integers
and we get the correct result.

Perl became famous for its string processing in general and regular expressions in particular. Strings
enclosed in forward slashes are interpreted as regular expressions. Together with the match operator=~,
we arrive at a very compact syntax for checking string with respect to regular expressions.

print "x1=y1" =~ /^\w+=\w+$/ ? "true" : "false";
-> true

Here, we test if the string"x1=y1" consists of two alphanumberic words separated by an equality sign
(more on regular expressions later). The backslashes are now interpreted in the context of a regular
expression. Followed by the letterw they represent the set of alphanumeric characters.

16.2.2. Variables

Perl knows three kinds of variables, each with different scoping rules: global, local, and lexical. Global
variables live in the global namespace of the current package (see below; for now we have only used the
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main package). They are visible to all programs. Local variables are dynamically scoped. They override
the value of a global variable for the duration of a block. Finally, lexical variables are lexically scoped,
that is, they are only visible within the block they are defined in. Perl’s lexical variables correspond to the
local variables we are used to from Scheme and the C family.

The default are global variables. Local variables have to be declared with thelocal keyword, lexical
ones with themykeyword. In practice, most programs use almost only lexical variables. For most
applications it is safe to assume that variables have to be declared withmy. In this chapter, we will
restrict ourselves to lexical variables (as we will this, this gets complicated enough in Perl). To ensure
that we do not define global variables by accident, we follow the common Perl practice and switch into
thestrict mode and turn on the warnings at the beginning of the script.

use strict;
use warnings;

As one of Perl’s curiosities, variables use the symbols dollar ("$"), at ("@"), and percent ("%") as
prefixes depending on the context. Let’s start with the simple case of scalar variables which start with a
dollar sign.

my $x = "Hello World";
print $x;

-> Hello World

With the conventions we introduced above, the whole program look like this:

use strict;
use warnings;

$\ = "\n";
$, = " ";

my $x = "Hello World";
print $x;

We introduce the new lexical variable with themykeyword and initialize it with the string "Hello World".
Alternatively, we could have declared the variable separately and assigned the string afterwards.

my $x;
$x = "Hello World";
print $x;

We can also declare and initialize multiple variables at the same time usingmywith a list of variables.

my ($x, $y) = ("John", "Joe");
print $x, $y;

-> John Joe
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When trying to use a variable outside of its scope, we get a compile error.

{
my $x = "Hello";

}
print $x;

-> Global symbol "$x" requires explicit package name

The compiler does not tell us that we try to use an undefined variable. Instead the compiler assumes that
we want to access a global variable without the package name enforced by thestrict mode. Without
thestrict mode, theprint statement would have referred to the global variable$x in themain

package. The program would have been compiled without errors, but the output would have been empty,
since the global variable$x was not initialized.

Knowing variables, we can now return to the string interpolation. We often would like to insert the value
a variable into a string. In Perl (like in UNIX shell languages), this is done automatically when using
double quotes to delimit the string.

my $name = "Frank";
print "My name is $name";

-> My name is Frank

This process of substituting variables in strings is called interpolation.

Next to regular expressions, Perl’s most prominent feature are the built-in collection types, arrays and
hashes. Both names refer to the underlying implementation. Arrays are dynamically resizing vectors
containing scalar values. Hashes are maps (implemented as hash tables) with scalar keys and values.

With these collections, the context dependent variable symbols start to get funny. When referring to an
array as a whole, a variable starts with an "at" sign, and a hash is indicated by the percent.

my @a = (1, 2, 3);
my %h = ("John", 55, "Joe", 33, "Mary", 110);

print @a;
print %h;

-> 1 2 3
Mary 110 Joe 33 John 55

Both, vectors and hashes are initialized with list literals which are just lists of comma separated values.
In a hash context (e.g., assignment to a hash variable), the list is viewed as the alterating list of keys and
values. In Perl programs you will often find a special shortcut for lists containing strings. It starts with
the keywordqw (quoted words) followed by a list of unquoted string enclosed in some delimiter (often a
slash or a parenthesis). The following expressions are all equivalent.
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@a = ("John", "Joe", "Mary");
@a = qw/John Joe Mary/;
@a = qw(John Joe Mary);

Using this special list quote you save the double quotes and the commas (some people may not consider
this worth a new syntax).

Another more useful syntactical element for lists is the arrow=>. It can be used whereever the comma is
used in a list and makes the definition of hashes more readable.

my %h = ("John" => 55, "Joe" => 33, "Mary" => 110);

Besides the pure readability, it also automatically double quotes string so that the expression above can
be shortened to the following version.

my %h = (John => 55, Joe => 33, Mary => 110);

You can also confuse the reader (which might be yourself), by using the arrow arbitrarily.

my @a = (1, 2 => 3 => 4, 5);
my %h = ("John", 55 => "Joe", 33 => "Mary" => 110);

The result is always the same.

To construct lists of consecutive values of some enumerated type, Perl also supports a range operator.. .

print (0 .. 10);
print (’a’ .. ’g’);

-> 0 1 2 3 4 5 6 7 8 9 10
a b c d e f g

The ranges include both limits (closed interval).

The funny thing about Perl’s type prefixes is that they change depending on the usage of the variable (for
the same variable!). Whenever we access an individual element of an array or a hash, the prefix becomes
a dollar sign.

print $a[0], $h{"John"}, $h{John};

One could argue that the indexing extracts a scalar, but seriously, there is no convincing argument for this
rule. Also note that a hash uses curly braces as the subscript operator. The hash subscript operator also
automatically adds double quotes to unquoted string (just likeqw and the arrow=>).

Perl’s arrays also support negative indexes (counting from the end of the array) and slices.
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my @a = (1 .. 5);
print $a[-2];
print @a[1..3];

-> 4
2 3 4

Since a slice is an array, the "at" sign is used as a prefix.

Here are a few more curiosities. What do you think is the value of an array in a scalar context, for
example, when assigning it to a to scalar variable?

my @a = ("a", "b", "c");
my $n = @a;
print "n=$n";

-> n=3

Yes, it is the length of the array (the only reasonable scalar value of an array). What about an array literal
in a scalar context?

my $x = ("John", "Joe", "Mary");
print "x=$x";
-> x=Mary

It is not interpreted as an array at all, but as an expression (in parentheses) using the comma operator.
The comma operator evaluates both sides and returns the value of the right hand side. If applied multiple
times, the value of the rightmost expression, here "Mary", is returned.

Since the different types of variables live in different name spaces, you can use the same name for a
scalar variable, an array, and a hash.

my $a = "blah";
my @a = ("a", "b", "c");
my %a = (x => 1, y => 2, z => 3);

print ’$a:’, $a;
print ’@a:’, @a;
print ’$a[1]:’, $a[1];
print ’%a:’, %a;
print ’$a{x}:’, $a{x};

-> $a: blah
@a: a b c
$a[1]: b
%a: x 1 y 2 z 3
$a{x}: 1
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Internally, Perl uses a "multi-cell" approach. Every symbol such as "a" has an associated structure with
one cell for scalars, one cell for arrays, one cell for hashes, and so forth. Recall that the Common Lisp
implementation uses two cells (one for "ordinary" values, one for functions) whereas Scheme is a
one-cell implementation. As we have already seen when comparing Lisp to Scheme, more cells mean
that objects can not be handled homogeneously which has to be accomodated by a more complex syntax.

16.2.3. Control Statements

Perl offers the whole set of control statements of procedural languages with a C-like syntax and adds a
few less common variations. For example, there is not only the typical if/else statement, but also the
negated variant unless/else.

my $x = 55;
if ($x < 10) { print "small"; }
elsif ($x < 100) { print "medium"; }
else { print "big"; }

unless (1 < 2) { print "false"; } else { print "true"; }

Thewhile andfor loops work like their C counterparts. You can jump to the next iteration usingnext

(equivalent to C’scontinue ) and leave the loop usinglast (equivalent to C’sbreak ). It is even
possible to repeat an iteration using theredo command. If you need some statements to be executed
between two iterations, they can be placed in an optionalcontinue block just after thewhile . Just like
unless is a shortcut for if-not (in Perl:if (!...) , until is the negated version ofwhile .

You can also iterate through an array using theforeach (you can also use justfor ) loop. Apart from the
different syntax (and less general applicability), it works like Python’s for-in loop.

my @a = (1 .. 3);
foreach $i (@a) {

print "i=$i";
}
foreach (@a) {

print;
}

-> i=1
i=2
i=3
1
2
3

If no loop variable is specified, the current element is assigned to the special variable$_. Since the
print function prints this special variable by default, we arrive at the short form shown in the second
loop.
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Iterating through the key-value pairs of a hash map is best accomplished with theeach function.

my %h = ("John" => 55, "Joe" => 66);
print each %h;
print each %h;
print each %h;
print each %h;

With each call, theeach function returns the next key-value pair in the map until there are no entries left.
It then returns an empty list. Callingeach again, starts the process all over again (Somehow it must store
the state of the iterator in the hash map itself). Combined with a while loop, we get all the key-value
pairs of a hash.

my %h = ("John" => 55, "Joe" => 66);
while (my ($key, $value) = each %h) {

print $key, $value;
}

-> Joe 66
John 55

The conditional statementsif andunless and the loop statementswhile anduntil can also be put
behind a statement as a so-called modifier.

print "too big" if ($x > 100);

@a = ("x", "y", "z");
print "elem: $elem" while $elem = shift @a;

16.2.4. References

Here is another quiz: What happens if we put an array into an array? More concrete, what is the length of
the following array?

my @a = (1, 2, (3, 4, 5));
my $n = @a;
print "n=$n";

-> n=5

The resulting array contains the numbers one to five! The array(3, 4, 5) is not inserted into the array
as a whole, but unpacked and inserted element-wise. Perl’s collections contain scalar values only. As
another little surprise, trying to store an array in a hash map stores the first element array (not the length
and neither the last element).

my %h = ("John", (3, 4, 5));
print $h{"John"};
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-> 3

At this point it is time to introduce another scalar type, the reference. A reference is a safe version of a C
pointer, and like C’s pointers, Perl’s references add a lot of power to the language. To obtain a reference
to an object, we apply the backslash operator. Going from a reference to the object the reference points to
can be accomplished in multiple ways. In the simplest case, we use the reference variable as a variable
name, that is, whereever you would normally use the name of the variable (without the prefix symbol),
you now use the name of the reference variable (including the dollar sign). Here is a scalar example.

my $x = "Hello";
my $rx = \$x;
print $rx, $$rx
$x = "World";
print $rx, $$rx;

-> SCALAR(0x0173f4) Hello
SCALAR(0x0173f4) World

And here are some examples using references to arrays and hashes.

my @a = ("John", "Joe", "Mary");
my $ra = \@a;
my $n = @$ra;
print "n=$n ", $$ra[1], $ra->[2];

-> n=3 Joe Mary

For array indexing there is an alternative syntax using an arrow suffixra-> instead of the dollar prefix
$ra as the dereferencing operator.

my %h = ("John" => 55, "Joe" => 66, "Mary" => 77);
my $rh = \%h;
print $$rh{"John"}, $rh->{"John"};

-> 55 55

Reference do not need to point to variables but can also reference values ("anonymous data" in Perl
parlance) directly.

my $rx = \"Hello";
print $$rx;
-> Hello

Because of the context sensitivity of the comma operator, it is not possible to create a reference to an
anonymous array by just putting a backslash in front of it.

my $ra = \("John", "Joe", "Mary");
print $$ra;
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-> Mary

Instead, there is a special syntax for references to anonymous arrays and hashes which makes them
almost look like Python lists and maps.

my $ra = ["John", "Joe", "Mary"];
my $rh = { "John" => 55, "Joe" => 55 };
print $ra->[0], print $rh->{"John"};

-> John 55

Now, using references, we can put non-scalar values in collections.

my @a = (1, 2, [3, 4, 5]);
my $n = @a;
print "n=$n ", $a[2]->[1], $a[2][1]

-> n=3 4 4

Note that the dereferencing arrow between array and hash subscripts can be omitted, that is,
$a[1]{"a"}[2] is equivalent to$a[1]->{"a"}->[2] .

Using the reference variable as a variable name, we always have to first assign the reference to a variable
before we can use it. A typical situation is a function returning a reference.

sub names { return ["John", "Joe", "Mary"]; }
my $x = names();
print @$x;

-> John Joe Mary

To avoid the temporary variable, Perl also allows to use an arbitrary block (returning a reference) as a
variable name.

sub names { return ["John", "Joe", "Mary"]; }
print @{names()};

Recalling the interpolation property of strings in double quotes, we can now put arbitrary expressions
into strings.

print "3 + 4 = ${\(3+4)}";
-> 3 + 4 = 7

Here we compute the result of "3+4", take the reference of it using the backslash operator, and use it as
the "variable name" for the interpolated variable. As usual, Perl’s syntax needs some getting use to, but it
works.
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16.2.5. Functions

Let’s see how we can organize a Perl program using functions, which are called sub-routines in Perl.

sub times2 {
my $x = shift(@_);
return 2 * $x;

}
print times2(20), times2 55;

-> 20 110

Now, this is different from what we’ve seen in the previous chapters. Perl does not support formal
function parameters even though one of its ancestors, GNU’snawk, does. Instead, Perl adopts a shell-like
approach and passes the arguments as an array to the function. Inside of the function you can access the
argument array with the implicit variable@_. In other words, Perl makes variable argument list, which
are the exception in most languages, the rule. Without a formal parameter list, a function definition
consists of just the keywordsub , the function name, and the function body which is a block of
statements enclosed in curly braces. The first statement introduces a local variable$x and assigns the
first element of the argument array to it. Since@_is the default array, we can just writeshift .

sub times2 {
my $x = shift;
return 2 * $x;

}

We could also access this element using indexing$_[0] , but the shift operation is the more idiomatic
way to access function arguments. With two argument, we get two identically looking local variables
statements.

sub add {
my $x = shift;
my $y = shift;
return $x + $y;

}

Even shorter, you can assign the argument array to list of local variables representing the arguments. This
has the advantage that the arguments array@_is not changed.

sub add {
my ($x, $y) = @_;
return $x + $y;

}

So, in reality the missing formal argument list is always simulated with some idiomatic use of local
variables.
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How are arguments passed to a function? Since the arguments are passed as an array, the semantics are
identical to the construction of arrays. If we pass an array, it will be unpacked and supplied to the
function as individual elements in the argument array.

sub showArgs { print "args:", @_; }

showArgs(1, 2, 3);
showArgs(1, ("a", "b", "c"), 2);

-> args: 1 2 3
args: 1 a b c 2

Another surprising property of Perl’s argument passing is that scalars are always passed by reference.
This means that you can change the value of variables passed to a function.

sub change {
for my $i (@_) {

$i *= 2;
}

}

my @a = (1, 2, 3);
change @a;
print @a;

my $a = 55;
change $a;
print $a;

-> 2 4 6
110

Using references, functions can be passed around as variables and arguments to functions.

my $rs = \&times2;
print $rs, &$rs(5)

-> CODE(0xa01f6c0) 10

Using a function reference we can implement thereduce function.

sub reduce {
my $f = shift;
my $initial = shift;
my @list = @_;
my $result = $initial;
foreach $i (@list) {

$result = &$f($result, $i);
}
return $result;

}
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sub add { return $_[0] + $_[1]; }

print "add", reduce(\&add, 10, (1, 2, 3));

$mult = sub { $_[0] * $_[1] };
print "mult", reduce($mult, 1, (1 .. 5));

-> add 16
mult 120

The second application of thereduce uses an anonymous function reference for the multiplication. Such
a function reference works like a lambda expression. Its syntax is extremely simple: just omit the name
of the function (I consider this as one of Perl’s highlights).

Using anonymous functions, it is even possible to return functions from functions.

sub adder {
my $x = shift;
return sub { my $y = shift; return $x + $y; }

}

$add100 = adder 100;
$add200 = adder 200;
print $add100, &$add100(5);
print $add200, &$add200(5);

-> CODE(0xa0200c4) 105
CODE(0xa020100) 205

Note that the different calls toadder really create different version of the function which carry the
context in which they were created (here the value of the local variable$x which was passed as an
argument toadder ). In other words, the returned function references are closures.

With this knowledge, defining thecompose functional is not a big step anymore.

sub compose {
my ($f, $g) = @_;
return sub { &$f(&$g(@_)); };

}

my $h = compose(\&times2, \&add);
print "compose", &$h(3, 4);
print "compose", &{compose(\&times2, \&add)}(3, 4);

-> 14

We pass the two function references as the arguments$f and$g to thecompose function. It return a
reference to an anonymous function which first applies$g to the arguments of the anonymous function
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and then$f to the result of$g. To apply the functions, we have to dereference the function references
using the plain dollar dereference operator. Similary, when applying the composed function, we have to
dereference the anonymous function reference$h returned by thecompose function. We could have
printed the result directly using a dereference block.

print "compose", &{compose(\&times2, \&add)}(3, 4);

16.3. More Features

16.3.1. Input and Output

Perl uses a different scalar data type for input and output: file handles. Besides the three standard file
handles STDIN, STDOUT, and STDERR, you can create your own by opening a file.

open(TEST, ">test.dat");
print TEST "Hello World";
close(TEST);

Theopen function takes the symbol of the file handle as the first argument and creates the associated
new file handle as a side effect. The second argument describes which file to open and how to open it.
The syntax is derived from the UNIX shell. A greater-than symbol opens a file for output, the shift
symbol>> opens a file in append mode. Perl’s print functions can write to different output streams, the
default one being STDOUT. If the stream is specified, it is placed between the name of theprint

function and the argument list. The stream is not an additional argument (no comma between the stream
and the following arguments). It is really a special syntax just for specifying an output stream.

The return value ofopen indicates the success or failure of the operation. The idiom you’ll find in many
Perl programs is the combination of the opening of a file and thedie function which exits the program if
the operation failes.

open(TEST, ">test.dat") || die "Could not create test.dat";
print TEST "Hello World";
close(TEST);

Once a file handle has been created, it can be used like any other scalar value. It can be assigned to
variables and passed to functions.

sub hello {
my $out = shift;
print $out "Hello again";

}
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open(TEST, ">test.dat") || die "Could not create test.dat";
hello(TEST);
close(TEST);

16.3.2. Special Variables

A Perl program can use a large number of predefined variables. You need the environment variables of
the operating system context in which the script is running? They are readily available in the special hash
variable%ENV. The command line arguments of your script are contained in the@ARGVarray. The
process id of the Perl process running your script or the name of your script file? They are found in the
variables with the fancy names$$ and$0, respectively. All in all there are a few dozens of special
variables defined in Perl. Some of them customize the behavior of Perl functions, some of them are set as
side effects of functions. We have already used the special variables$, and$\ which control how the
print function separates output fields and records.

16.3.3. Packages and Modules

Packages are Perl’s namespace mechanism. When defining a symbol (variable, function), the symbol is
always placed in the current package. You can refer explicitly to a symbol in a package by preceding the
symbol’s name by the package qualifier consisting of the package name and two colons. Up to now, we
have only used the default packagemain . We could therefore refer to this package using themain::

prefix.

$x = "Hello World";
print $main::x;

Perl’spackage statement switches to a different package. It can occur anywhere in the code and causes
the current package to be changed to the new specified package until the end of the block or a new
package statement.

sub hello {"hello-main"; }
{

package A;
print hello();
sub hello {"hello-A"; }
package B;
print hello();
sub hello {"hello-B"; }

}
print hello(), main::hello(), A::hello(), B::hello();

-> hello-A
hello-B
hello-main hello-main hello-A hello-B
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Within a package, the call of thehello function without package qualifier refers to the function defined
in the package, even if the function is defined after the call. The same could be demonstrated with global
variables, but since thestrict mode enforces fully qualified global variable names, this does not make
sense anymore.

A Perl module is package defined in a file whose name is the package name with the.pm . Here is a tiny
module calledSample and stored in a fileSample.pm .

package Sample;

BEGIN { print "Loading module Sample"; }
END { print "Unloading module Sample"; }

sub hello { print "Hello", $_[0]; }

1;

After the package declaration, we define a constructor and a destructor for the module. These functions
have the special namesBEGIN andEND(an awk heritage) and are called before loading the module and
right before unloading it, respectively. Note that thesub keyword of these functions can be omitted.
Besides these special functions, we only define one more functionhello to be used by clients of the
module. The expression1; at the end of the module makes sure that the module returns a true value
when loading it. To use the module (e.g., in our sample scriptsample.pl ), we have to load it using the
require command.

require Sample;
Sample::hello("World");

-> Hello World

We can then use the module’s package as if it was defined in the script.

16.3.4. Object Oriented Perl

Perl uses its packages and modules to add object oriented features to the language. Object are references
which have been "blessed" with a package. The package plays the role of the class definition, its
functions are the methods. Class methods are functions which obtain the package (i.e., class) as the first
argument, instance methods are functions whose first argument is the instance. Here is a first example.

package Person;

sub new {
my $class = shift;
my ($name, $age) = @_;
my $self = { name => $name, age => $age};
return bless $self, $class;
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}

sub name {
my $self = shift;
$self->{name};

}

package main;

my $person = Person->new("Homer", 55);
print ref($person), $person->name();

-> Person Homer

We create a new package calledPerson (it does not have to be in a new module) and define two
methods. The constructornew is a class method creating new instances ofPerson class. We use a hash
reference (the most common case) for the object$self and set the name and age entries as supplied to
the constructor. The next step is the magic blessing of this hash reference. It links the reference to the
class so that Perl can find its method (i.e., the functions of the attached package). Next, we define a
simple getter method for the name. It demonstrates how the instance is passed to the instance method as
the first argument. By convention this argument is called$self like in Smalltalk and Python.

The only new syntax is the call of the class and instance methods using the arrow-> . Doing so lets Perl
pass the class and instance implicitly as the first argument to the respective functions of the package
implementing the class. Alternatively, we could have done this ourselves.

$person = Person::new("Person", "Homer", 55);
print Person::name($person);

The method call supported by the new syntax implicitly uses the package attached to the reference
$person during the "blessing". It then tries to find the method in this package (and its base class
packages as we will see below) and calls the function with the instance as the first argument.

With the knowledge about the internal structure of ourPerson object, we could have accessed thename

directly as$person->{name} , but this would have violated the encapsulation of the class.
Encapsulation is not enforced by Perl, but merely a convention. Use the provided methods only and do
not exploit knowledge about the structure of a class.

Inheritance is realized by putting the names of the base class packages into a special global array called
ISA .

package Employee;

@Employee::ISA = qw(Person);

sub new {
my $self = Person::new(@_);
$self->{no} = $_[3];
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return $self;
}

sub no {
my $self = shift;
$self->{no};

}

package main;

my $employee = Employee->new("Homer", 55, 12345);
print ref($employee), $employee->name(), $employee->no();

Employee Homer 12345

In theEmployee constructornew, we first call thePerson constructor and then add the additional
attribute to the blessed hash table.

16.3.5. Function Prototypes

16.4. Discussion

Perl marks an extreme of all the languages covered in this book. While some languages started with a
clear set of powerful ideas (Lisp, C) or were designed carefully during years of research (ML, Haskell),
Perl looks like a collection of solutions for a large number of small concrete problems. Perl’s main
characteristic is the context sensitivity which is related to Perl’s use of funny symbols and which is
always good for surprises. In this sense, it also marks the opposite of a pure functional language where
everything has a well defined meaning independent of the context. Perl applications often are extremely
stable software: Once you have created a large Perl application, it will be hard to find somebody willing
to change it (including yourself).
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Haskell was designed by a committee as a standard pure functional language during the late 1980’s. It is
based on ML and Miranda (from which it inherits its lazy evaluation semantics). The first definition was
defined in 1990, and the current standard Haskell98 is considered a stable foundation of the language. By
now, Haskell has become the most popular pure functional language. Looking at it after the ML chapters,
it appears as a "purer" version of ML.

17.1. Software and Installation

We use the Hugs (http://www.haskell.org/hugs/) implementation of Haskell98 on Windows and Linux
for our experiments. On Windows, it comes with an installer and a small graphical development
environmentwinhugs.exe which can be used to enter code interactively as we have done before. The
window also contains a browser for the classes and modules (see below). Starting Hugs loads the
standard modulePrelude and then waits for our commands at the prompt.

ahohmann@kermit:~$ hugs
__ __ __ __ ____ ___ _________________________________________
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003
||---|| ___|| World Wide Web: http://haskell.org/hugs
|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: November 2003 _________________________________________

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help
Prelude>

As an alternative, all examples can be run using the Glasgow Haskell Compiler
(http://www.haskell.org/ghc/) system, or GHC for short. It also comes with an interpreter calledghci

which works similar to Hugs. In face, GHC is the more complete Haskell98 implementation including
some standard library functions missing in Hugs (which probably have been added to Hugs by the time
you are reading this).

17.2. Quick Tour

17.2.1. Expressions

Entering our first examples, we are happy not to encounter any surprises. We can print our favorite
message and evaluate arithmetic expressions as if we were using Python.
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Prelude> "Hello World"
"Hello World"
Prelude> print "Hello World"
"Hello World"

If we switch on the type printing in the options menu (or using the+t option with the command line
interpreter), Hugs responds like the ML systems with the value and the type of an expression.

Prelude> "Hello World"
"Hello World" :: String
Prelude> 1.5
1.5 :: Double

How does Hugs perform as a calculator? Since Haskell belongs to the "syntactically rich" function
languages, it supports arithmetic operators that behave like they are supposed to.

Prelude> 3 + 4 * 5
23 :: Integer
Prelude> 1.5 - 2
-0.5 :: Double
Prelude> mod 5 3
2 :: Integer
Prelude> mod 3 3 + 1
1 :: Integer

Note that, in contrast to ML (and Ocaml with its "dotted" operators such as+. ), we can mix integers and
floating point numbers in one expression. Haskell allows operators and functions to be overloaded for
different argument types.

Functions such asmodare applied by just putting them in front of their arguments without any special
syntax for the argument list. In fact, Haskell does not know the concept of multiple arguments. Every
Haskell function is called with exactly one argument. The expressionmod 5 3 actually consists of two
function calls. First themod function is applied to the single argument5 resulting in a new function
which is then applied to the single argument3. The expression is therefore equivalent to(mod 5) 3 .

Prelude> (mod 5) 2
1 :: Integer

The infix notation for operators is just syntactic sugar, and we can switch back and forth between
operator and function syntax by enclosing the operator in parentheses or the function in back quotes.

Prelude> (+) 4 5
9 :: Integer
Prelude> 5 ‘mod‘ 2
1 :: Integer

Being able to treat operators as functions makes it easy to use them as arguments to higher order
functions as we will see below.
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If we are interested in just the type of an expression (and not its value), we can discover it with the:type

command. This is of particular interest for functions, since they do not know how to display themselves.

Prelude> :type "Hello"
"Hello" :: String
Prelude> :type mod
mod :: Integral a => a -> a -> a

The first partIntegral a => of the function type tells us thata is a type which behaves like an integer.
In other words, it must belong to the type classInteger . We will explain these concepts later in detail.

The right hand sidea -> a -> a confirms that functions have one argument only. The type expression
has to be read asa -> (a -> a) and tells us thatmod is a function with an argument of typea
returning a function which again takes an argument of typea and returns a value of typea. If we apply
mod to the single argument 5, we obtain a new function of typeIntegral a => a -> a .

Prelude> :type mod 5
(5 ‘mod‘) :: Integral a => a -> a
Prelude> (mod 5) 2
1

Note that the function application is left associative withf x y being equivalent to(f x) y , whereas
the arrow of the function types is right associative witha -> b -> c being equivalent toa -> (b ->

c) ).

As a functional language, Haskell has conditional expressions (rather than the conditional statements we
are used to from imperative languages). Here is the if-then-else expression:

Prelude> if 1 < 2 then "ok" else "not ok"
"ok"

Since the result of the expression has to be well defined (and typed), theelse part is required and both,
then andelse part have to be of the same type.

The other conditional expression if thecase contruction. We can not show this directly on the Hugs
command line, because Hugs does not allow multi-line commands. Instead, we have to put the
definitions in a file and load this file using the:load command. We create a file calledtest.hs and
enter the following code:

x = 5
y = case (x) of

1 -> "one"
2 -> "two"
_ -> "more"
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Each Haskell file consists of a list of definitions, in our case just two. We first bind the integer 5 to the
symbolx . The next definition contains thecase expression we were interested in. Depending on the
value ofx , we bindy to an appropriate string.

Thecase expression consists of the expression to be checked between the two keywordscase andof ,
followed by the list of alternatives, each mapping a pattern on the left hand side to an expression on the
right hand side of the array operator. A pattern can be a single value such as1 or 2, or a variable such as
the dummy variable_ which is typically used for the default case. As we will see later, a pattern can also
include a constructor such as a tuple or the list constructor: .

How does Haskell know that the four lines of thecase construction belong together? Similar to Python,
Haskell uses the layout to decide where a definition ends. Haskell’soffside rulestates that a new
definition starts at the same indentation level or to the left of the start of the definition.

To use these definitions, we have to load the file from the Hugs interpreter using the:load command
(all Hugs commands start with a colon).

Prelude> :load test.hs
Reading file "test.hs":

Hugs session for:
C:\Program Files\Hugs98\lib\Prelude.hs
test.hs
Main> y
"more"

Note that the prompt has now changed toMain> showing the name of the default module (since we have
not specified any module in our file).

We can also separate the alternatives of thecase with semicolons in a single line, but this style is much
less readable and therefore hardly ever used.

Prelude> case (3) of 1 -> "one"; 2 -> "two"; _ -> "more"
"more" :: [Char]

17.2.2. Functions

Before we dive into types and type classes, we will define a few simple functions of our own. Again, we
can not do this right away in the Hugs shell, but have to put the definitions our test filetest.hs .

times2 x = 2*x

fac 0 = 1
fac n = n * fac(n-1)
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We then reload the file and test the functions:

Main> :reload
...
Main> times2 55
110 :: Integer
Main> fac 5
120 :: Integer

Looking at the code, this is probably the shortest form possible for defining thetimes2 function. It also
explains why we can’t define the function on the command line. There is no special keyword such asdef

or val introducing the definition, just the plain equation.

The fac functions shows Haskell’s minimal syntax for pattern matching and recursive functions. We just
write down the defining equations for the different patterns. A pattern can be a single value (such as0 in
our example), a variable (such asn), or some constructor expressions for a tuple, list, or user defined data
type (as we will see further down).

Often patterns are not enough to distinguish the different cases of a function definition. In this case, we
can define the function using so-called guards which allow for arbitrary conditions depending on the
arguments. As an example, we define thesign function in our test module.

sign x | x < 0 = -1
| x == 0 = 0
| x > 0 = 1

After changing the module file, we can reload the module from the shell (without leaving the interpreter)
using thereload command.

Main> :reload
...
Main> sign -55
-1 :: Integer
Test: sign 1.5
1 :: Integer

Of course, we could have also used theif expression to achieve the same effect in a less readable
manner.

sign1 x = if x < 0 then -1 else if x > 0 then 1 else 0

We can’t define named functions on the command line, but Haskell does understand lambda expressions:

Prelude> (\x -> 2*x) 4
8 :: Integer
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Here, the backslash is supposed to look like a lambda, and the definition uses an arrow instead of the
equal sign in the normal function definition above.

Higher order functions (functions taking function arguments and possibly returning new functions)
following Haskell’s mathematical style: just write down the defining equation. Here is the definition of
the composition of two function (one function applied to the result of the other):

compose f g x = f (g x)

After entering this definition in our test module (test.hs ), we can reload the module and apply the new
higher order function.

Main> :reload
...
Main> :type compose
compose :: (a -> b) -> (c -> a) -> c -> b
Main> compose (5+) (10+) 5
20 :: Integer

Note that Haskell automatically derives the most general type for thecompose function. Alternatively,
we could have used the lambda syntax to clearly indicate that we are returning a new function.

compose f g = \x -> f (g x)

It probably does not come as a surprise that the composition is part of the standard library in form of the
. operator.

Main> :type (.)
(.) :: (a -> b) -> (c -> a) -> c -> b
Main> ((5+) . (10+)) 5
20 :: Integer

17.2.3. Collections

You may have got the impression already that Haskell is a "mathematical" programming language. It
shouldn’t be surprising that tuples are a natural and common type (or better type constructor) in Haskell.

Main> (1, 1.5)
(1,1.5) :: (Integer,Double)
Main> fst (4, 5.5)
4 :: Integer
Main> snd (4, 5.5)
5.5 :: Double

We construct a tuple following the mathematical notation (like in Python). The two functionsfst and
snd give us the first and second element of the tuple, respectively. Note that these function calls look as
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if we apply a function to multiple arguments, but we are in fact applying the functions to single
arguments of type tuple.

Like infix operators, the tuple notation is just syntactic sugar for the application of the "tuple functions"
(,) , („) , and so forth.

Prelude> :type (,)
(,) :: a -> b -> (a,b)
Prelude> :type („)
(„) :: a -> b -> c -> (a,b,c)
Prelude> (,) 1.5 2
(1.5,2)
Prelude> („) 1.5 2 "a"
(1.5,2,"a")

List literals look like in Python, but must contain a single type of elements.

Main> [1, 2, 3]
[1,2,3] :: [Integer]
Main> [1, "bla"]
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : [1,"bla"]
*** Type : Num [Char] => [[Char]]

Note that the notation for list types reflects list literals by enclosing the element type in square brackets
and that strings are just lists of characters, that is, have type[Char] .

Haskell uses a single colon as the list constructor (cons in Lisp, double colon in ML) and the double
plus++ to concatenate two lists. We can access individual elements with the!! operator.

Prelude> 1:2:3:[]
[1,2,3] :: [Integer]
Prelude> [1, 2, 3] ++ [4, 5, 6]
[1,2,3,4,5,6] :: [Integer]
Prelude> "Hello " ++ "World"
"Hello World" :: [Char]
Prelude> [1,2] !! 1
2
Prelude> [1,2] !! 0
1

As a generalization of the familiar head and tail functions, Haskell offers a symmetric set of functions for
accessing the beginning or end of a list:head andlast give the first and last element, respectively,
tail andinit all but the first or last element, andtake anddrop give you the first so many elements
or the rest of the list.

Prelude> head [1, 2, 3]
1
Prelude> last [1, 2, 3]
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3
Prelude> init [1, 2, 3]
[1,2]
Prelude> tail [1, 2, 3]
[2,3]
Prelude> take 2 [1, 2, 3, 4]
[1,2]
Prelude> drop 2 [1, 2, 3, 4]
[3,4]

We can also check if a value is contained in a list (or not), reverse it, compute the sum or product,
combine two lists into a list of pairs (zip) or vice versa (unzip). However you would like to process a list,
Haskell has most likely a function in the Prelude which does the right thing.

Prelude> elem 5 [1, 2, 3]
False :: Bool
Prelude> elem 2 [1, 2, 3]
True :: Bool
Prelude> reverse [1, 2, 3]
[3,2,1] :: [Integer]
Prelude> sum [1, 2, 3]
6 :: Integer
Prelude> product [1, 2, 3, 4]
24 :: Integer
Prelude> zip [1, 2, 3] ["a", "b"]
[(1,"a"),(2,"b")] :: [(Integer,[Char])]
Prelude> unzip [(1,"a"),(2,"b")]
([1,2],["a","b"]) :: ([Integer],[[Char]])

Besides these "normal" list functions, a functional language such as Haskell has of course a number of
higher order functions operating on the list as a whole.

Prelude> map (\x -> 2*x) [1, 2, 3]
[2,4,6] :: [Integer]
Prelude> foldr (+) 10 [1, 2, 3]
16 :: Integer
Prelude> filter odd [1, 2, 3, 4, 5]
[1,3,5] :: [Integer]

And guess where Python’s list comprehensions come from? In Haskell, they look just like the
mathematical definition. The "element of" sign is<- (somewhat looking like an epsilon).

Prelude> [2*x | x <- [1,2,3] ]
[2,4,6] :: [Integer]
Prelude> [2*x | x <- [1,2,3], odd x ]
[2,6] :: [Integer]
Prelude> [2*x + y | x <- [1,2,3], odd x, y <- [10,20] ]
[12,22,16,26] :: [Integer]

232



Chapter 17. Haskell

On the left hand side of the bar we have an expression whose results are put into the generated list. On
the right hand side of the bar we can put any combination of generators (such asx <- [1,2,3] ) and
tests (boolean expressions such asodd x ). Haskell iterates through the generators, checks the tests, and,
in case the tests are true, places the result of the expression in the list.

Haskell also offers a number of means to generate lists. In the simplest case, we can use ellipses to
generate a sequence of consecutive integers.

Prelude> [1..5]
[1,2,3,4,5] :: [Integer]
Prelude> [100..110]
[100,101,102,103,104,105,106,107,108,109,110] :: [Integer]

We can also vary the step size and generate decreasing numbers.

Prelude> [1,4..20]
[1,4,7,10,13,16,19] :: [Integer]
Prelude> [10,8..0]
[10,8,6,4,2,0] :: [Integer]

We can even generate infinite sequences. Since Haskell’sInteger type is unlimit (ok, limited only by
the memory constraints), these sequences go on forever unless we interrupt the program by pressing the
stop button or Ctrl-C.

Prelude> [0,10..]
[0,10,20,30,40,50,60,70,80,90,100,110,120,130,{Interrupted!}

Studying the Prelude, we discover more functions generating sequences such as replicate (repeating the
same value a specified number of times) and iterate (applying a function over and over again). The
iterate function again generates an infinite sequence. We can use thetake function to see the first so
many elements without having to interrupt the program.

Prelude> replicate 10 "a"
["a","a","a","a","a","a","a","a","a","a"] :: [[Char]]
Prelude> take 10 (iterate (2*) 1)
[1,2,4,8,16,32,64,128,256,512] :: [Integer]

The infinite lists touch another fundamental property of Haskell: lazy evaluation. Each expression is
evaluate only if it is needed and only once if it is needed multiple times. In the case of infinite lists, the
list is not constructed before it can be used (this would take a little bit too long). Instead, the next value is
generated exactly when it is needed.

17.2.4. Types and Classes

In contrast to ML, we can apply the functionstimes2 andsign defined above to integers as well as
floating point numbers.
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Main> times2 5.5
11.0 :: Double

This makes us curious about the type oftimes2 . In ML, the compiler would have inferred from the
integer constant and the multiplication that the function is an integer function. Haskell is smarter and
uses less restrictive types.

Main> :type times2
times2 :: Num a => a -> a
Main> :type (*)
(*) :: Num a => a -> a -> a

Our new function is of typeNum a => a -> a . What is this supposed to mean? The right hand sidea

-> a tell us that it is a function mapping a value of some typea to the same type. The left hand side is a
type restriction. It tells us thata has to be a numeric type, that is, a type of classNum. Similarly, the type
of the multiplication is a (curried) function with two arguments, both of the same numeric type and
resulting in the same numeric type. How isNumdefined? The:info command tells us all about it.

Main> :info Num
-- type class
infixl 6 +
infixl 6 -
infixl 7 *
class (Eq a, Show a) => Num a where

(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
fromInt :: Int -> a

-- instances:
instance Num Int
instance Num Integer
instance Num Float
instance Num Double
instance Integral a => Num (Ratio a)

We see that a numeric type has to support the basic arithmetic operators and conversion functions from
integers. The command also shows the currently available types of classNum. There is more information
hidden in the class statementclass (Eq a, Show a) . The classNumis derived fromEq. In plain
words, each numeric type must also be an equality type.

Main> :info Eq
-- type class
infix 4 ==
infix 4 /=

234



Chapter 17. Haskell

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

-- instances:
instance Eq ()
instance Eq Char
...

Checking the class definition, we find out that an equality type has to support - surprise, surprise - the
equality and inequality operators.

17.2.5. User Defined Types

Haskell is not restricted to the build-in types and classes likeInteger andNum. They are nothing special
and we can define our own types and classes and use them as if they were part of the standard modules.
Let’s start with our own types. First, we can define shortcuts for existing types. This doesn’t give us
anything new besides a more readable way to deal with complex type constructors.

type ShopItem = (String, Float)
type Basket = [ShopItem]

shopSum :: Basket -> Float
shopSum [] = 0.0
shopSum ((_,i):xs) = i + shopSum xs
Main> :reload
...
Main> shopSum2 [("apple", 1.5), ("pear", 2.5)]
4.0 :: Float

We could have defined the function directly using the type expression[(String, Float)] in the type
declaration forshopSum, or, even shorter, without any type declaration.

shopSum2 [] = 0.0
shopSum2 ((_,i):xs) = i + shopSum xs

Having seen ML, user defined types in Haskell are nothing new. As with function definitions, we can’t
type them interactively, but have to put the definitions in a module. We’ll use our test module again. We
see the familiar data constructors, tuple types, union types, and recursive types.
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17.2.6. Imperative Programming

Haskell touts itself as apurefunctional language, and for now we have restricted ourselves to pure
definitions without any side effects. In the real world, however, we would like to read a file or print a
message among other useful actions causing side effects.

How can we introduce imperative features without compromising the functional core of the language?
The basics idea is to consider actions as values of special types. These "action values" can be combined
in a controlled fashion to form larger actions. The simplest example takes us back to our favorite
message.

Prelude> print "Hello World"
"Hello World"

:: IO ()

This looks like a pure statement taken from an imperative language (it works in Perl and Python, for
example). The only surprising thing is the typeIO () of the expression. The expressionprint "Hello

World" is a I/O action. The interpreter happens to treat actions by executing them resulting in the output
"Hello World" (as the side effect of the action).

The situation get clearer when looking at the type of the functionprint .

Prelude> :type print
print :: Show a => a -> IO ()

The functionprint takes a showable value (that is, of type classShow) and returns an I/O action of type
IO () . IO is a built-in type constructor for input and output actions. The typeIO a is an I/O action
returning a value of typea. The functiongetLine , for example, is of typeIO String , since is
corresponds to an action resulting in a string.

Prelude> :type getLine
getLine :: IO String
Prelude> getLine
1234
"1234" :: IO String

Since theprint action does not return anything, it is of typeIO () with the unit type() .

We can work with actions like with any other value, for example, store them in collections or pass them
to functions.

Prelude> [print "Hello", print "World"]
[<<IO action>>,<<IO action>>] :: [IO ()]
Prelude> [print "Hello", print "World"] !! 1
"World"

:: IO ()
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Prelude> (print "Hello", getLine)
(<<IO action>>,<<IO action>>) :: (IO (),IO String)
Prelude> snd (print "Hello", getLine)
asdf
"asdf" :: IO String

A first simple way to combine actions is anif expression:

Prelude> if 1 < 2 then print "Hello" else print "World"
"Hello"

:: IO ()

Another natural operation for actions is sequencing (which is at the core of imperative programming).
Haskell’sdo construct lets us combine multiple actions so that the resulting action executes the
combined actions in sequence.

Prelude> do print "Hello"; print "World"
"Hello"
"World"

:: IO ()

Here is a more elaborate example usingdo to recursively perform an action multiple times.

times n action
= if n <= 1

then action
else do action

times (n-1) action

This way, we can easily print our message many times.

Main> times 3 (print "Hello World")
"Hello World"
"Hello World"
"Hello World"

:: IO ()

What is missing until now is a link between I/O actions typeIO a ) and the underlying values of typea.
Within a do block, we can bind the result of an action to a symbol with the<- . Here is an action which
echos a line read from standard input.

echo = do line <- getLine
print line

Superficially it looks like an assignment, but it is just giving the result of an action (heregetLine ) a
name which can be used in the next actions (hereprint ) of thedo construct.

Main> echo
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asdf
"asdf"

:: IO ()

Note that the<- is restricted todo blocks. This way, the results of actions can not spoil the functional
program.

Going in the opposite directory, thereturn function turns any value into an I/O action which does
nothing (no side effects) but return the original value.

Prelude> return "Hello" :: IO String
"Hello" :: IO String

This does not accomplish much by itself, but is sometimes needed to manipulate values within actions.
As an example, we have a look at an extendedecho program which echos line after line until the end of
file is reached. First, we need awhile loop which runs an action until a test (of typeIO Bool ) becomes
true.

while test action
= do res <- test

if res then do action
while test action

else return ()

Note thereturn () expression which is the I/O action which does absolutely nothing, but is needed as
theelse expression.

Next, we apply the while loop to the end-of-file condition. The built-in actionisEOF is of typeIO Bool ,
but unfortunately returns the opposite of the test we need in the while loop. Therefore, we have to create
a new test action which gets the result and returns the negated value.

import IO
echo

= while (do result <- isEOF
return (not result))

(do line <- getLine
print line)

1

Alternatively, we can first define a new functionioNot which negates I/O actions

ioNot test
= do result <- test

return (not result)
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and then use it in the condition of the while loop.

echo2
= while (ioNot isEOF)

(do line <- getLine
putStrLn line)

So, what actually is this type constructorIO? What makes it special so that we can use it with sequencing
(do), naming of results (<- ) andreturn constructs? Checking the type of thereturn function we see
that it is defined for any typea b where the type constructora is aMonad.

Main> :type return
return :: Monad a => b -> a b

Similarly, Haskell’s type inference determines that the type of ourtimes function relies on a monad.

Main> :type times
times :: (Ord a, Num a, Monad b) => a -> b c -> b c

The number of times we want to iterate must be an ordered number (type classesOrd andNum), and the
action to be repeated is of typeb c where the type constructorb must be a monad again.

A monad? What is this? No worries, we will not get into its origin in category theory (also known as
"abstract nonsense"). In practice, it is enough to know that monads generalize the concept of I/O actions
we have seen above to all the "action types" for which the "action operations" such as sequencing and
return make sense.

17.3. More Features

17.3.1. Modules and Visibility

For now, we have used the definitions of the Prelude and defined our own in a test file which by default
became theMain module. Haskell supports large scale development using modules and explicit export
and import expressions. As a first step, we can give our test moduletest.hs a new name using the
module construction. To be able to load the module by its module than (rather than its file name), we
store the code in a fileTest.hs corresponding to the module name.

module Test where

fac 0 = 1
fac n = n * fac(n-1)
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When we now load the module, the prompt changes toTest .

Prelude> :load Test
Reading file "Test.hs":

Hugs session for:
/usr/share/hugs98/lib/Prelude.hs
Test.hs
Test> fac 5
120

We can now import the moduleTest from another module.

module NewTest where
import Test
f = fac

The import instruction makes all the public symbols of the imported module available in the importing
module. Using the term "public symbols", it is clear that there must be a way to restrict the symbols
exported by a module. All we need to do is place the list of exported symbols behind the name of the
module.

module Test (x, y) where
x = 55
y = 66
z = 77

In this (trivial) example, only the symbolsx andy are exported, whereasz is only visible by the module
itself. Trying to usez in another module importingTest

module NewTest where
import Test
a = x
c = z

leads to an error:

Prelude> :load NewTest
Reading file "NewTest.hs":
Reading file "Test.hs":
Reading file "NewTest.hs":
Dependency analysis
ERROR NewTest.hs:4 - Undefined variable "z"

Haskell’simport directive has a number of other options such as renaming the imported module,
importing just a few symbols, or enforcing the use of qualified names (such asTest.fac ). The Haskell
report explain the module system in detail.
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17.3.2. Lazy Evaluation

17.4. Discussion

Haskell introduces a whole range of features such as type classes, lazy evaluation, and monads for
imperative programming. Judging from the number of libraries available for Haskell (especially the
Glasgow Haskell Compiler GHC), we can go a long way with this unique programming model. It
remains to be seen if these concepts will be adopted by mainstream programming languages (or if
Haskell becomes one of them). As a first indication we saw that Python definitily benefits a lot from the
adoption of Haskell’s list comprehensions.

Haskell’s treatment of operators combines the "normal" infix notation and strong typing with the
advantages of Scheme when passing operators as (function) values to other functions.

References

Simon Thompson’s Haskell book[THOMPSON99]> is a very readable and up-to-date introduction to
Haskell.

Simon Thompson, 0-201-34275-8, Addison-Wesley, 1999,Haskell - The Craft of Functional
Programming: Second Edition.

Notes
1. If may have trouble running this program with Hugs, since the Hugs version I’ve used did not

implement theisEOF action yet.
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Python was created by Guido van Rossum in the late 1980s and first published in 1991.

18.1. Software and Installation

There are two implementation of Python, the original one in C (also known as C-Python) and Jython, the
implementation on top of the Java virtual machine. We will be using C-Python for the examples, but the
two implementations are very close to each other (with Jython slightly lagging behind regarding new
features) so that most examples should work as well using Jython. To install Python on Windows, just
download the latest version from http://www.python.org and run the installer. This will install Python
including the documentation and the little integrated development environment IDLE on your computer.

18.2. Quick Tour

Python’s interactive programming environment helps us to explore the language by example. I’m using
the interactive shell which is part of IDLE, the IDE which comes with the Python installation. Starting it
shows the following output that invites us to enter Python commands at the prompt >>>.

Python 2.2.2 (#37, Oct 14 2002, 17:02:34) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
IDLE 0.8 -- press F1 for help
>>>

18.2.1. Expressions and Variables

Let’s answer this friendly invitation with the unavoidable "Hello World!".

>>> print "Hello World"
Hello World

This was easy (how many lines do you need in Java?). In fact, the interactive shell prints the return value
of the expressions we enter so that the plain "Hello World" is enough.

>>> "Hello World"
’Hello World’

Strings use single or double quotes as delimiters or "triple double quote" if the string contains newlines
characters.

>>> """Hello
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World"""
’Hello\nWorld’

All these forms of string literals behave the same. What about some calculations?

>>> 4*5+2**3
28

The only thing one has to know here is that ** means "to the power of". Can we save the result for later
use?

>>> x = 4*5+2**3
>>> x
28

Python’s variables don’t need to be declared in advance. A variable is automatically created the first time
a value is assigned to it. Referring to an undefined variable creates an error.

>>> y
Traceback (most recent call last):

File "<pyshell#6>", line 1, in ?
y

NameError: name ’y’ is not defined

All variables are local to the current file or function they are defined in unless declared otherwise (see
below).

If you ask why scripting languages are so much more productive than more "traditional" languages, you
are often referred to the powerful built-in string processing and collections. We can compare strings,
concatenate and repeat them, and extract individual characters or substrings with straight-forward
operators.

>>> "blah" == "blub"
0
>>> "blah" < "blub"
1
>>> "blah " + "blub"
’blah blub’
>>> 3 * "blah "
’blah blah blah’
>>> "Hello"[2]
’l’
>>> "Hello"[-1]
’o’
>>> "Hello"[1:4]
’ell’
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Note that Python’s indexes always start at zero, and negative indexes count from the end. We extract
substrings with the slice operator which contains the limits, separated by a colon, in square brackets.
Python ranges always uses the semantics of a right half open interval, that is, including the lower bound
and excluding the upper bound. Once you get used to it, this turns out to be a useful convention, since
you can always use the length of a structure as the upper bound.

>>> x = "blah"
>>> print x, x[0:len(x)], x[0:], x[:len(x)], x[:]
blah blah blah blah blah

Besides these operators, there is a large number of functions and methods manipulating strings.

>>> len("blah")
4
>>> "blah".upper()
’BLAH’
>>> "blahblah".replace("ah", "ub")
’blubblub’
>>> "blah".center(10)
’ blah ’
>>> "blahblah".find("ah")
2
>>> "blahblah".count("a")
2

This is the first example using method calls. The syntax is identical to method calls in most popular
object based languages (C++, Java, JavaScript). The interpretation, however, is different. Calling a
method is a two step process. First, we find the field whose name is the method.

>>> "blah".find
<built-in method upper of str object at 0x00824C98>

This field has to be a "callable object". Next, this object is "called" by passing the arguments in
parentheses. Therefore, the parentheses of the method call are significant and can’t be omitted (like, e.g.,
in Perl and Ruby). They make the difference between retrieving the method and actually calling it. We
can perform the two steps explicitly using an intermediate variable to store the callable object.

>>> f = "blah".find
>>> f("la")
1

Python’s API is not fully "object-oriented", although it is steadily moving in this direction. The length of
a any collection (including strings) is still obtained with thelen function although it could be a method
of the collection. Most string manipulations are now methods of the string type (they were originally
only available as functions in the string module).

The examples showed only a small subset of the available string methods. If you would like to see all of
them, trydir("") which shows you the list of all methods a string has to offer.
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18.2.2. Control Flow

Python supports the usual conditional and loop statements of procedural languages.

>>> i = 0
>>> while i<5:

print i
i += 1

0
1
2
3
4

Here we see one of the most debated characteristics of Python: there are no braces, no begin or end to
denote the scope of the function. Instead the white space tells the compiler which statements belong
together. Consecutive lines with the same identation comprise a block. It does not matter how the lines
are indented (TABs or spaces, number of spaces), but the indentation has to be exactly the same for all
lines in a block. Like it or not, it is at least a very compact way to define blocks of statements. In general,
a complex Python statement such as a function definition, a class definition, or a control statement (if,
while, exception handling) starts with a keyword followed by some expression, a colon, and an indented
block. Here is a conditional statement.

>>> x = 50
>>> if x < 10:

print "small"
elif x < 100:

print "medium"
else:

print "big"

medium

Here is another example showing a conditional statement nested in a while loop.

>>> i = 0
>>> while i<3:
if i%2 == 0:
print i, "is even"
else:
print i, "is odd"
i += 1
0 is even
1 is odd
2 is even

Python’s most common loop is thefor statement. Afor loop uses an iterator to walk through a
sequence of values. An iterator is an object which knows how to get the next element in the sequence and
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when to stop. As an example, the standard string iterator walks through the characters of a string one by
one.

>>> i = iter("ab")
>>> i.next()
’a’
>>> i.next()
’b’
>>> i.next()
Traceback (most recent call last):

File "<pyshell#205>", line 1, in ?
i.next()

StopIteration

We get the next element by calling the iterator’snext method, and the iterator tells us to stop by
throwing aStopIteration exception. Thefor loop assigns the result of thenext method to the
iteration variable until this exception is encountered.

>>> for i in iter("ab"):
print i

a
b

The call to theiter function is optional. Thefor loop tries to find a suitable iterator automatically if it
is not given one directly.

>>> for i in "ab":
print i

We will see more examples in the context of collections and generators.

Python strictly distinguishes expressions from statements. Expressions compute values and statements
such asprint , if , or while control the program flow or cause other side effects. In Python, statements
do not return any value and therefore can not be used in expressions. This is in strong contrast to the
functional languages we will cover later where everything (including control statements) is an expression
with a well-defined value. The newer scripting language Ruby follows the functional model as well.
Programmers working with C-family languages will especially miss an equivalent of the "functional if"
operator?: in Python.1

There is another difference to languages of the C family (an all other languages with proper lexical
scoping). Python’s control statements do not introduces new scopes. A variable defined in a block of a
control statement is also visible outside.

>>> if x % 2 == 0:
result = "even"

else:
result = "odd"
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>>> result
’even’
>>> for i in "ab": pass
>>> i
’b’

18.2.3. Collections

Python has three built-in collection types: list, map (dictionary) and tuple. A list is a sequence of values
with fast (constant time) random access. In other languages, this kind of collection is often called a
vector. A map associates values with keys. As a generalization of pairs, triples, and so forth, a tuple is
sequence of fixed length. All collections can contain any kind of value, including other collections. Let’s
start with some list examples.

>>> l = [1, 2, "a", "b"]
>>> l[2]
’a’
>>> l[1:3]
[2, ’a’]
>>> [1, 2] + [3, 4]
[1, 2, 3, 4]
>>> ["a", "b"] * 3
[’a’, ’b’, ’a’, ’b’, ’a’, ’b’]
>>> len([1, "a", [2, 3]])
3

List literals are comma separated elements enclosed in square brackets. We recognize all the operators
we have already used for strings. For lists, the subscript and slice operators can also be used to change
the list.

>>> l = [1, 2, 3, 4]
>>> l[2] = 100
>>> l
[1, 2, 100, 4]
>>> l[1:3] = ["a", "b", "c"]
>>> l
[1, ’a’, ’b’, ’c’, 4]
>>> del l[2]
>>> l
[1, ’a’, ’c’, 4]
>>> del l[2:]
[1, ’a’]
>>> del l
>>> l
Traceback (most recent call last):

File "<pyshell#81>", line 1, in ?
l

NameError: name ’l’ is not defined
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The only unusual syntax is thedel operator which deletes the following object from its contained. In the
example we use it to delete a list element, a slice, and the list variable itself.

Lists have a number of methods manipulating the list object in-place (also called destructive methods).

>>> l = [0, 1, 2, 3, 4]
>>> l.reverse()
>>> l
[4, 3, 2, 1, 0]
>>> l.sort()
>>> l
[0, 1, 2, 3, 4]
>>> l.extend([’a’, ’b’])
[0, 1, 2, 3, 4, ’a’, ’b’]
>>> l.append(’c’)
>>> l
[0, 1, 2, 3, 4, ’a’, ’b’, ’c’]
>>> l.pop()
’c’
>>> l.remove(4)
>>> l
[0, 1, 2, 3, ’a’, ’b’]

Theextends method is the destructive version of the plus operator. The methodsappend andpop let us
view a list as a LIFO stack. Note that all the destructive methods returnNone. This is a Python
convention. Since nothing is returned, the methods can not be used in a context which assumes that the
method returns a new changed object and leaves the original one unaltered. Keep in mind that the
underlying implementation is an array and not a linked list which means that some methods might take
longer for long lists than you expect, because elements have to be shifted or copied.

Dictionaries (also called maps) are not only crucial to many scripts, but also to Python’s internal
implementation. A map literal is a sequence of key-value pairs enclosed in curly braces. Key and value
of each pair are separated by a colon. Keys and values can be of any type.

>>> m = {"John": 55, "Joe": [1, 2, 3]}
>>> m
{’John’: 55, ’Joe’: [1, 2, 3]}
>>> m["Joe"]
[1, 2, 3]
>>> m["Joe"] = 66
{’John’: 55, ’Joe’: 66}
>>> m
>>> del m["John"]
>>> m
{’Joe’: 66}
>>> m["John"]
Traceback (most recent call last):

File "<pyshell#90>", line 1, in ?
m["John"]

KeyError: John
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>>> m.has_key("John")
0

Accessing elements in a map is like indexing a list, just with arbitrary keys instead of integers (and there
are no slices).

The three methodskeys , values anditems gives us the keys, values, and key-value pairs as lists.

>>> print m.keys()
[’John’, ’Joe’]
>>> m.values()
[55, [1, 2, 3]]
>>> m.items()
[(’John’, 55), (’Joe’, [1, 2, 3])]

The same information can also be obtained more efficiently in the form of iterators with theiterkeys ,
itervalues , anditeritems methods. These methods will become useful when iterating through the
entries in a map.

A data structure which is less common in other languages is the tuple. Tuple literals are comma separated
values in parentheses (just like the arguments of a function). A trailing comma is allowed. It is
mandatory for a one-tuple, since it distinguishes the one-tuple from a simple expression in parentheses.

>>> t = (1, 2, 3)
>>> t
(1, 2, 3)
>>> t[1]
2
>>> t[1]
Traceback (most recent call last):

File "<pyshell#181>", line 1, in ?
t[1] = 55

TypeError: object doesn’t support item assignment
>>> ("blah",)
(’blah’,)
>>> ("blah")
(’blah’)

Like strings, tuples can’t be changed, they are immutable objects. But you may changed the objects
contained in the tuple if they are mutable.

>>> t = (1, [])
>>> t[1].append("blah")
>>> t
(1, ["blah"])

Whenever it makes sense, Python automatically packs a sequence of comma separated values into a tuple
and vice versa. This can, for example, be used combine multiple assignments into one.
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>>> 1, 2
(1, 2)
>>> x, y = 1, 2
>>> x, y
(1, 2)

As we will see this feature also simplifies the iteration through maps and allows for multiple return
values of functions.

How do we iterate throug a collection? Thefor loop walks through a list without the need to construct
the loop explicitly.

>>> for i in ["a", "b", "c"]:
print "i:", i

i: a
i: b
i: c
>>> i
’c’

Note that the loop variable is visible after the loop. Together with the automatic unpacking of pairs, we
can easily iterate through a list of pairs.

>>> for a, b in [(1, ’a’), (2, ’b’)]:
print a, b

1 a
2 b

Combine this with theitems method of a map and you get a convenient way to walk through the map’s
name-value pairs.

>>> m = {"John": 55, "Joe": 44}
>>> for key, value in m.items():

print key, value

John 55
Joe 44

If we want to avoid the intermediate creation of the list, we can use the iterator instead.

>>> m = {"John": 55, "Joe": 44}
>>> for key, value in m.iteritems():

print key, value

The default iterator gives us the keys of the map (and probably the most intuitive way to walk through
the map).

>>> for key in m:
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print key, m[key]

18.2.4. Functions

Up to now, we have only used built-in functions, but eventually we will need our own. Here is an exciting
one.

>>> def times2(x):
"Multiply argument by two"
return 2*x

>>> times2(5)
10

A function is defined with thedef keyword followed by the name of the function, the parameter list, a
colon and the indented function body. If the body starts with a string, the string is interpreted as the
documentation of the function. Here the body just consists of the documentation string and the return
statement. Unless left with an explicit return value, a function returnsNone, Python’s equivalent of
"nothing" or "undefined".

The interesting part is how this definition is handled by the Python interpreter. It creates a new function
object and assigns it to the variable whose name is the name of the function. The function object is a first
class object with its attributes and methods. We can, for example, ask the function for its name and
documentation using the special attributes__name__ and__doc__ .

>>> times2
<function times2 at 0x0097D1E0>
>>> times2.__name__
’times2’
>>> times2.__doc__
’Multiply argument by two’

We can even add new attributes dynamically, for example, to add more meta information to the function
such as permissions.

>>> times2.permissions = ["everybody"]
>>> times.permissions
[’everybody’]

Now that we have this function object, we can assign it to another variable, pass it to another ("higher
order") function, and so forth.

>>> f = times2
>>> f(3)
6
>>> def printResult(f, x):

print "%s(%d)=%d" % (f.__name__, x, f(x))
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>>> printResult(times2, 5)
times2(5)=10

Higher order functions can often replace explicit loops. Python also supports a number of functions
which are well-known for list oriented languages such as Lisp. As a first example, lists can be processed
element-wise using the map function.

>>> def times2(x): return 2*x
>>> map(times2, [1, 2, 3])
[2, 4, 6]
>>> map(lambda x, y: x + y, [1, 2, 3], [2, 3, 4])
[3, 5, 7]
>>> map(lambda x, y: (x, y), [1, 2, 3], ["a", "b", "c"])
[(1, ’a’), (2, ’b’), (3, ’c’)]

Themap function if the first example of a higher order function (also called a functional), that is, a
function which takes other functions as arguments. Since functions are first class objects in Python,
passing functions to other functions is not different from passing any other kind of value. The last
expression combines several lists into a list of tuples and can be more easily written using the built-in
zip function:

>>> zip([1, 2, 3], ["a", "b", "c", "d"])
[(1, ’a’), (2, ’b’), (3, ’c’)]

It is also possible to extract a sub-list using a filter:

>>> l = range(10)
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> filter(lambda x: x % 2 == 0, l)
[0, 2, 4, 6, 8]

As another example of list processing, you can recursively compute a value from a list using reduce.

>>> reduce(lambda x, y: x+y, [1, 2, 3, 4])
10
>>> reduce(lambda x, y: x + ", " + y, ["Joe", "John", "Mary"])
’Joe, John, Mary’

Like themap function, it takes a function and a list. The function is first applied to the first two elements
of the list, then to the result of this computation and the third element, and so forth. Optionally, one can
provide a start value so that the recursion starts by applying the function to the start value and the first
value of the list.

>>> reduce(lambda x, y: x+y, [], 3)
3
>>> reduce(lambda x, y: x+y, [1], 3)
4
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Mapandfilter are used less often in new programs because of a recent extension of the syntax for list
literals known as list comprehensions. Remember the definition of sets from other set in your math class?
Something like "all f(x) where x in X and x satisfies some condition"? Here is the Python version of this
kind of list (instead of set) definition.

>>> [x**2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

The expression constructs the list of squares of all even integers between zero and ten (not including).
List comprehensions may combine multiple lists, e.g.:

>>> firstNames = ["John", "Joe", "Mary"]
>>> lastNames = ["Miller", "Smith"]
>>> [(f, l) for f in firstNames for l in lastNames]
[(’John’, ’Miller’), (’John’, ’Smith’), (’Joe’, ’Miller’),

(’Joe’, ’Smith’), (’Mary’, ’Miller’), (’Mary’, ’Smith’)]

Two more features a C/C++ programmer misses when moving to Java are variable argument lists and
default arguments. Python takes the C/C++ functionality one step further by allowing arguments to be
passed by name.

>>> def f(s="blah", n=1): print n*s
>>> f("x", 5)
xxxxx
>>> f(n=2)
blahblah
>>> f(s="x")
x

Variable argument lists are declared with an asterisk and passed as a tuple to the function body.

>>> def f(s="blah", *args): print s, args
>>> f("blub", 1, 2, 3)
blub (1, 2, 3)

Similarly, keyword arguments can be passed as a generic argument map to a functions.

>>> def f(x, **kw): print x, kw
>>> f(x=1, y=2)
1 {’y’: 2}

Putting it all together we can define a function with normal arguments, optional arguments, a variable
argument tuple, and a keyword argument map.

>>> def f(x, y=5, *args, **kw):
print x, y, args, kw

>>> f(1, 2, 3, a=4)
1 2 (3,) {’a’: 4}
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We can also do the opposite and call a function with an argument tuple and keyword argument list.

>>> def f(x, y=2, z=3): print x, y, z
>>> args = (100, 200)
>>> kw = {’z’: 55}
>>> f(*args, **kw)
100 200 55

This feature comes in handy when passing arguments in a generic context from one function to another.
As an application, we can now define the higher order functioncompose which combines two functions
to a new function applying one function after the other.

>>> def compose(f, g): return lambda *args, **kw: f(g(*args, **kw))
>>> def times2(x): return 2*x
>>> def add(x, y): return x + y
>>> h = compose(times2, add)
>>> h(3, 4)
14

18.2.5. Objects and Classes

What’s the fastest way to teach object-oriented programming? I mean, after drawing some diagrams
explaining objects, classes, inheritance, polymorphism and so on. Let’s type a Python class and see.

>>> class Person:
def __init__(self, name):
self.name = name
def sayHello(self):
print "Hello, I’m", self.name
>>> andy = Person("Andy")
>>> andy.sayHello()
Hello, I’m Andy

Ok, this it not very sophisticated, but we have defined a classPerson , created an instance of this class,
and called the methodsayHello , all in seven lines of code. To do this, we had to know two things:
method definitions looks like functions taking the instanceself as the first argument (you don’t need to
call it self , but everybody does), and the constructor is called__init__ . This name is one of the
function names with special meaning in Python, all starting and ending with two underscore characters.
To continue our study of object orientation, let’s see what the newly introduced variables are:

>>> type(Person)
<type ’class’>
>>> andy
<__main__.Person instance at 0x009FD0B0>
>>> andy.sayHello
<bound method Person.sayHello of <__main__.Person instance at 0x009FD0B0>>
>>> Person.sayHello
<unbound method Person.sayHello>

254



Chapter 18. Python

Here we can see precisely what we have defined.Person is a class, andandy is an instance of this class.
There seem to be two kinds of methods:andy.sayHello is a bound to the objectandy , whereas
Person.sayHello is not bound to an instance of the classPerson yet. Since we can print all these
objects, we can also use them in all kinds of expressions.

>>> f = andy.sayHello
>>> f()
Hello, I’m Andy
>>> F = Person.sayHello
>>> F(andy)
Hello, I’m Andy
>>> def evalThreeTimes(f):
for i in range(3): f()
>>> evalThreeTimes(andy.sayHello)
Hello, I’m Andy
Hello, I’m Andy
Hello, I’m Andy

The next example demontrates polymorphism. We define a new classEmployee derived fromPerson

which adds another attribute for the employee number which the obedient employee has to mention
whenever saying hello.

>>> class Employee(Person):
def __init__(self, name, number):
Person.__init__(self, name)
self.number = number
def sayHello(self):
print "Hello, I’m", self.name, "also known as number", self.number
>>> homer = Employee("Homer", 1234)
>>> homer.sayHello()
Hello, I’m Homer also known as number 1234

It looks like all methods in Python can be polymorphic, since we don’t have to do anything special to
define the new behavior (similar to Smalltalk and the default semantic (non-final method) in Java). The
next example tells us more about the way Python class work.

>>> def f(self):
print "Hi there, I’m", self.name

>>> Person.sayHello = f
>>> andy.sayHello()
Hi there, I’m Andy
>>> homer.sayHello()
Hello, I’m Homer also known as number 1234

We changed thesayHello method by assigning a new function to the unbound method, and indeed,
calling sayHello on the instanceandy now gives new answer, buthomer (being anEmployee ) does
not change his behaviour. This shows that methods are just callable members of a class. When calling a
method, Python looks for a member with the name of the called method and then executes the "call
operator" on this objects. The same happens when calling a function or a class: Python first looks for the
object (like for any other variable) in the current environment and then passes the function’s arguments to
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the "call" method of this callable object. You can turn any of your own objects into callable objects
which behave like functions by implementing the special__call__ method.

>>> class A:
def __init__(self, n): self.n = n
def __call__(self, x): return self.n * x
>>> a = A(5)
>>> a(3)
15

Existing Python classes can not be extended as easily as classes in other dynamic object oriented
languages (Smalltalk, Objective C, CLOS). When we define a class again, a new class is created (in
Ruby, the new class members are added to the existing class).

>>> class A:
def __init__(self, n): self.n = n
>>> A(5).n
5
>>> class A: pass
>>> A(5)
Traceback (most recent call last):

File "<pyshell#244>", line 1, in ?
A(5)

TypeError: this constructor takes no arguments

However, since methods are just callable member of the class, we can attach functions as methods to an
existing class.

>>> class A:
def __init__(self, name): self.name = name

>>> def hello(self): return "My name is " + self.name
>>> A.hello = hello
>>> A("Homer").hello()
’My name is Homer’

An interesting application of keyword arguments is a "universal constructor" for objects.

>>> class Object:
def __init__(self, **kw):
self.__dict__.update(kw)
>>> joe = Object(name="Joe", age=25)
>>> joe.__dict__
{’age’: 25, ’name’: ’Joe’}
>>> print "my name is", joe.name
my name is Joe
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18.3. More Features

18.3.1. Exceptions

Exceptions are by now well accepted as a good means to separate the main logic of a program from error
handling.

>>> try:
1/0

except ZeroDivisionError, e:
print e
integer division or modulo by zero

Theexcept statement takes the name of the exception class we want to handle and the name of the
variable in which the exception should be stored. Python comes with its own hierarchy of exception
classes, and we can easily add our own.

18.3.2. Nested Definitions

Most Python statements can occur anywhere in the code. You can nest function definitions, class
definitions, import statements within each other or other control statements. In the first example, a
function returns another (local) function.

>>> def f(a):
def g(x): return a + x
return g
>>> h = f(10)
>>> h(5)
15

The argumenta passed to the first functionf is used in the local functiong. This example only works in
the new versions of Python supporting nested scopes.

Similarly, the next function creates a class on the fly and returns it to the caller.

>>> def f(x):
class B:
def __init__(self):
self.x = x
return B
>>> c = f(5)
>>> d = c()
>>> d
<__main__.B instance at 0x00923D60>
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>>> d.x
5

18.3.3. Generators

Generators are another recent addition to Python, probably in response to Ruby (which copied it from
Icon). A generator is a function-like object which can act as an iterator. The generator interrupts its
processing, returns a value, and later continues at the same place while keeping its state (local variables,
etc.) between the calls. To activate the generator feature one has to import it from the future (Python’s
way to gradually introduce changes which could break some code, in this case because of the new
keyword "yield").

>>> from __future__ import generators
>>> def f(x):
yield x
yield 2*x
yield 3*x
>>> for i in f(5): print i
5
10
15

Generators are rather useful when implementing iterators on complex data structures (e.g., a tree walk).

18.3.4. String Formatting

If there is one feature I’m missing in Java, it is a formatting function as powerful as C’sprintf . This is
even more true, since I know Python’s merge operator%. The percent operator merges a format string (a
printf-like pattern) with the values on the right hand side (either a single value or a tuple of values).

>>> "my name is %s" % "Joe"
’my name is Joe’
>>> "name: %s, age: %d" % ("Joe", 25)
’name: Joe, age: 25’

Many times, inserting the values in the order in which they appear is not what you want. Imagine a
template for a letter in which you would like to insert the name of the recipient multiple times. In this
case you can use named placeholders in the format string and pass the values as a dictionary:

>>> "name: %(name)s %(age)d" % {"name": "Joe", "age": 25}
’name: Joe 25’

Remembering that the attributes of an object are accessible as a dictionary, this results in a nice way to
insert objects into templates:
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>>> class Person:
def __init__(self, name, age):
self.name = name
self.age = age
>>> joe = Person("Joe", 25)
>>> "name: %(name)s, age: %(age)d" % joe.__dict__
’name: Joe, age: 25’

18.3.5. Operator Overloading

All the operators we have used so far were predefined in the language core. If we want operators to work
with our own objects, we have to override the associated special methods. However, you can not change
the behavior of a built-in class and redefine, say, the meaning of the operator+ for integers.

18.3.6. Class Methods and Properties

Version 2.2 adds two kinds of methods to Python’s toolset, static methods and class methods. Static
methods are just functions which are made part of the class so that we can call them with the class or an
instance. Unlike the other methods, the functions have no special argument (such as the instance passed
to instance methods). Class methods are like static method, but get the class passed as the first argument.

>>> class A(object):
def f(*args):

print args
fStatic = staticmethod(f)
fClass = classmethod(f)

>>> class B(A): pass
>>> b = B()
>>> A.fStatic(55)
(55,)
>>> b.fStatic(55)
(55,)
>>> A.fClass(55)
(<class ’__main__.A’>, 55)
>>> b.fClass(55)
(<class ’__main__.B’>, 55)

Both types of methods are created by first defining the function inside of the class just like an instance
method and then converting this function to a static or class method the built-in functions
staticmethod andclassmethod , respectively.

Properties look like attributes to the outside world, but are implemented with accessor methods. Prior to
Python 2.2, one had to implement the special methods__getattr__ and__setattr__ to achieve this
behavior. As of Python 2.2, the newproperty function accomplishes the same effect much more easily.
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>>> class A(object):
def setx(self, x):
print "setting x"
self._x = x
def getx(self):
print "geeting x"
return self._x
x = property(getx, setx)

>>> a = A()
>>> a.x = 55
setting x
>>> a.x
geeting x
55

18.3.7. Visibility

By default, all members of a class are public. There is no equivalent to the visibility qualifiers of C++ or
Java. However, it is possible to make the access to a class member more difficult. Whenever the name of
a member starts with two underscore characters but does not end with two underscores (like Python’s
special members), Python considers the member private and adds an underscore and the class name as a
prefix (this process is known as name mangling).

>>> class A:
def __init__(self, name): self.__name = name
def getName(self): return self.__name

>>> a = A("Homer")
>>> dir(a)
[’_A__name’, ’__doc__’, ’__init__’, ’__module__’, ’getName’]
>>> a.getName()
’Homer’
>>> a.__name
Traceback (most recent call last):

File "<pyshell#8>", line 1, in ?
a.__name

AttributeError: A instance has no attribute ’__name’
>>> a._A__name
’Homer’

Within the class, we can still use the original name__name, but the member is actually stored under the
name_A__name. Of course this does not prevent you from accessing this attribute directly, but it makes
it a lot harder. Note that this approach works for attributes and method alike, since methods are just
callable attributes.
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18.4. Libraries and Common Examples

18.4.1. Modules and Packages

Up to now we have used the core language only, and as usual this is just the tip of the iceberg. Most of
the useful functions are hidden in libraries. Python organizes libraries in modules and packages. Modules
are just files (with the .py suffix) containing python code (you can also implement modules in C, but this
is out of scope of this presentation), and packages are directories containing other modules or packages.

# test.py
def foo(x):

return 2*x

>>> import test
>>> test.foo(5)
10
>>> from test import foo
>>> foo(3)
6

18.4.2. File I/O

Python’s I/O libraries were developed as an abstraction of the UNIX system. File objects are input/output
streams which can be created from files, sockets, and in memory strings. Here are some examples:

>>> f = open("test.txt", "w")
>>> for name in ["Joe", "John", "Mary"]:
f.write("my name is %s\n" % name)
>>> f.close()
>>> open("test.txt").read()
’my name is Joe\nmy name is John\nmy name is Mary\n’
>>> for line in open("test.txt"):
print "line:", line.strip()
line: my name is Joe
line: my name is John
line: my name is Mary

18.4.3. Regular Expressions

No scripting language can succeed without a sophisticated regular expression library. Python’s (second)
regular expression module is modeled after Perl’s killer feature, but uses a plain object based interface.

>>> import re
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>>> pattern = re.compile("hello[ \t]*(.*)")
>>> match = pattern.match("hello world")
>>> match
<_sre.SRE_Match object at 0x0145A190>
>>> match.group(1)
’world’
>>> match.group(0)
’hello world’
>>> pattern.match("bla")
>>> print pattern.match("bla")
None

18.4.4. SQL Database Access

After some time, Python now also provides a standard interface for the access to an SQL database
including drivers for the most common databases (Oracle, Sybase, PostgreSQL, mySQL, SAP DB, etc.).

>>> import sys, psycopg
>>> connection = psycopg.connect(

"host=127.0.0.1 user=test password=test dbname=testdb")
>>> cursor = conn.cursor()
>>> try:

cursor.execute("create table person (firstname varchar(20), lastname varchar(20))")
cursor.execute("insert into person values (’Homer’, ’Simpson’)")
cursor.execute("select * from person")
print cursor.fetchall()

finally:
curs.execute("drop table person")

18.5. Discussion

Now, that we have seen many aspects of Python, what are its main characteristics? What causes the
language to be very expressive and easy to learn? Are these properties related to the bad performance and
dangerous "openess" of the langage?

Variables don’t have to be declared, and you can assign anything to a variable. This is one of the features
which make life very convenient in the beginning, but may cause trouble for large systems. Not requiring
variables to be declared saves typing, but can turn simple typos into hard-to-find bugs. It is difficult to
automatically optimize Python programs (e.g., using a just-in-time compiler), because a variable may
contain any type of object, and the type can change during the execution of the program.

Python has no concept of an "interface", that is a declaration of of a function or class without an
implementation. This makes large scale development harder, since you only find out at runtime if an
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object has the expected attributes and methods. In this sense, Python’s object orientation is very similar
to Smalltalk.

Without interfaces, it is almost impossible to define APIs precisely. Most of Python’s standard APIs are
nonetheless quite easy to learn, but it all depends on conventions and good documentation. The definition
of complex APIs such as database access has definitely suffered from the lack of interfaces. Not
surprisingly, the probably most complex Python application, the web publishing (content management)
systen Zope has introduced its own concept of interfaces.

Python strongly distinguished statements (e.g., control statements) and expressions. Statements don’t
represent a value. This prevents a more functional programming style in some situations. For example,
there is no "functional if" statement such as the question operator in C. Ideally one would like to write

>>> y = if x < 0 then -1 else 1
SyntaxError: invalid syntax

but this is unfortunately not valid Python code (Ruby does better in this area).
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SUN microsystems started developing Java (originally under the name "Oak") in 1991 as a programming
environment for small devices such as set-top boxes for interactive TV. Java was officially announced in
1995 and quickly gained popularity together with the internet (partly because of the integration of Java in
the Netscape and Microsoft web browsers). Especially after the introduction of the Java 2 platform end
of 1998 (Java 1.2), the language (and programming environment) took the software industry by storm
entering more and more areas from enterprise server applications to mobile phones.

Java is more than just a programming language. It also defines a run-time environment with a
well-defined byte-code language, the Java virtual machine, on top of which other languages can be
implemented (such as JavaScript or Jython). In this chapter we will focus on Java, the programming
language.

19.1. Software and Installation

We will be using the SUN’s Java software development kit (J2SDK), version 1.4.2, which you can
download for a number of platforms from the main Java (http://java.sun.com) site. We mainly need the
compilerjavac to compile the source code into the intermediate byte code, and the interpreterjava to
run this byte code.

19.2. Quick Tour

19.2.1. Hello World

As usual in a more traditional, compiled language we need some scaffolding before we can enjoy the
result of the our "Hello World" program.

public class Hello {
public static final void main(String[] args) {

System.out.println("Hello World");
}

}

To run this program, we put this code into a file calledHello.java , call the compiler with the
commandjavac Hello.java , and finally execute the resulting byte code (contained in the class file
Hello.class ) with the Java interpreter usingjava -classpath . Hello (no .class suffix here!).
Theclasspath option tells the interpreter where to look for classes. In our case, we want it to pick up
the class we have just compiled in the current directory.

265



Chapter 19. Java

Two things catch our attention immediately. First, a Java program looks a lot like C (or C++), and
second, Java seems to be serious about object orientation in the sense that nothing goes without a class.
C’s main function as the entry point to a program becomes a static method of a class, that is, a method
bound to a class and not an instance of a class. In our example, the surrounding class provides no more
than a namespace for the function, since it does not use the class at all.

Java’s classes are directly mapped to the file system. A Java source file typically contains a single class
(to be precise, exactly one public, non-nested class), whose name is reflected in the name of the source
file by just adding the.java suffix. The same holds for packages, Java’s means to organize the source
code in a hierarchical manner. The package hierarchy maps to the directory tree of the underlying file
system. As an example, we can put our "Hello World" program in thesample package by adding the
package declaration as the first line to the source code and putting the source file in the subdirectory
sample .

package sample;

public class Hello {
public static final void main(String[] args) {

System.out.println("Hello World");
}

}

Of course, we also have to tell the compiler which new source file to compile using the commandjavac

sample/Hello.java . Similarly, we have to supply the fully qualified class namesample.Hello

when running the program with the Java interpreter, that is, use the commandjava -classpath .

sample.Hello .

With this knowledge about packages, we can continue dissecting the program. The actual print statement
System.out.println("Hello World"); is a call to the methodprintln of the standard output
stream which is available as a class member (static member in Java parlance) of theSystem class. The
fully qualified name of this class is actuallyjava.lang.System , that is, it is defined in the standard
library packagejava.lang . The same is true for theString class used in the signature of themain

method. Hence, we could have written

public class Hello {
public static final void main(java.lang.String[] args) {

java.lang.System.out.println("Hello World");
}

}

Alternatively, we could have imported the standard package with theimport statement before the class
definition.

import java.lang.*;
public class Hello {

public static final void main(String[] args) {
System.out.println("Hello World");

}
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}

Since the classes of the standard packagejava.lang are used everywhere in a Java program, the
compiler uses the import statementimport java.lang.* implicitly.

Before we finally leave this example for more exciting tasks, I would like to point out two differences to
the early member of the C family: There is separation of declaration and definition as in C++ and
Objective C, and the array brackets are normally placed behind the type rather than the variable
(although the latter is still allowed).

19.2.2. Types

The fact that Java is an object oriented programming language does not mean that everything is an object
like in Smalltalk. Instead, following its C/C++ ancestors, there is a clear divide between primitive types
such as integers on the one hand and objects on the other.

Primitive values are plain scalar values. They have no methods, live on the stack, and use value
semantics (no direct pointers in Java!). Their type is only known at compile time and they can’t be used
in a generic context (e.g., a collection).

public class Sample {
public static void main(String[] args) {

double x = 1.25;
double y = 2.5 / x + 1;
System.out.println(Double.toString(y)); // true

int m = 5, n = 10;
System.out.println(Boolean.toString(m+2*n == 25)); // true

}
}

Java supports all of C’s scalar types with the exception of unsigned integers. As an addition, there is also
a boolean type. Since one of Java’s main goals is portability, the representation of the primitive types is
well-defined. Along integer, for example, is always a 64 bit long independent of the underlying
operating system.

Note that Java follows C++ and allows us to define variables in middle of block of statements. To print
the results, we use the statictoString methods of the standard classesDouble andBoolean .

All other data in Java (including arrays, structures, etc.) is represented as objects. Objects are quite the
opposite of primitive values. They have attributes and methods, live on the heap, and use reference
semantics. You can ask for an object’s type (the class) at run-time and do most of the things we know
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from Smalltalk. Objects are created using the new operator (another C++ heritage) and automatically
deleted by Java’s garbage collection if there is no reference to the object anymore and the virtual
machine needs more memory.

public class Sample {
public static void main(String[] args) {

String a = new String("blah");
String b = new String("blah");
String c = a;

System.out.println(Boolean.toString(a == b)); // false
System.out.println(Boolean.toString(a == c)); // true
System.out.println(Boolean.toString(a.equals(b))); // true

}
}

In its effort to radically simplify C++, Java dropped all features deemed complex or dangerous: pointers,
operator overloading, parameterized types (generics, templates), default arguments, variable argument
lists, macros, and so forth. As a consequence of the lack of operator overloading, the equality operator
== always refers to object identity. To test equality in terms of the contents of the object, one has to call
theequals method. Especially for strings this is one of the gotchas for the beginning Java developer.1

Strings are not a very good example for objects, since they play a special role in Java. Unlike most other
objects, strings are immutable, that is, they can be changed once they have been created. Furthermore,
Java supports strings them with some special syntax. We can directly assign a string literal to a string
object (reference variable, to be precise), and the plus operator is overloaded with string concatenation
including the conversion of any other type to a string. Therefore, we could have written the last example
as follows.

public class Sample {
public static void main(String[] args) {

String a = "blah";
String b = "blah";
String c = a;

System.out.println("" + (a == b)); // false
System.out.println("" + (a == c)); // true
System.out.println("" + (a.equals(b))); // true

}
}

None of these special syntax features is available to user defined classes.

19.2.3. Classes and Interfaces

It is about time to define our first Java class.
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19.2.4. Exceptions

Like most modern languages, Java uses exceptions to handle error conditions. Exceptions a objects
extending theThrowable class. To handle an exception, the code in question has to be placed in atry

block, followed by an arbitrary number ofcatch blocks handling different exceptions (matching by
inheritance), and an optionalfinally block containing actions (such as closing a resource) to be
performed after the try block whether an exceptions occurs or not.

public class ExceptionSample {
static void testException(int i) {

try {
System.out.println("start try " + i);
if (i == 0) {

throw new MyException(i);
}
else if (i == 1) {

throw new Exception("oops");
}
System.out.println("end try");

}
catch (MyException e) {

System.out.println("caught my exception: " + e.getMessage());
}
catch (Exception e) {

System.out.println("caught exception: " + e.getMessage());
}
finally {

System.out.println("clean up");
}

}

public static void main(String[] args) {
testException(0);
testException(1);
testException(2);

}
}

class MyException extends Exception {
MyException(int i) {

super("i=" + i);
}

}

The example defines a custom exception classMyException which is thrown during the first run of the
testException method and caught by the first catch block. During the second call, the general
exception passes the first catch block, but is caught by the second one. In any case, the clean-up message
of the finally clause is printed.

start try 0
start try 0
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caught my exception: i=0
clean up
start try 1
caught exception: oops
clean up
start try 2
end try
clean up

Due to the garbage collection, the finally block is much more important than in C++, since we can’t rely
on destructors to release resources.

As a peculiarity, Java distinguishes checked and unchecked exceptions. If a method may throw a checked
exception (and not catch it), it must declare the exception with athrows clause.

public class ExceptionSample1 {
static void throwingMethod(int i) throws MyException {

if (i == 0) {
throw new MyException("oops");

}
}

public static void main(String[] args) {
try {

throwingMethod(0);
}
catch (Exception e) {

System.out.println("exception: " + e.getMessage());
}

}
}

class MyException extends Exception {
MyException(String message) {

super(message);
}

}

In other words, checked exceptions become part of the signature or a method. An exception is a check
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19.3. More Features

19.3.1. Collections

With version 1.2, Java obtained a thoroughly designed collection library similar to ones available for
Smalltalk.

Set s = new HashSet();
s.add("a");
s.add("b");
s.add("c");
for (Iterator i=s.iterator(); i.hasNext(); ) {

System.out.println(s.next());
}

19.3.2. Inner Classes

19.3.3. Reflection

Java’s version 1.1 introduced another important enhancement: the possibility to obtain detailed
information about classes at run-time. Being a no-brainer for Smalltalk, Java’s predecessor C++ to this
date provides only very limited "run-time type information" (RTTI) which does not give access to
attributes or method.

19.3.4. Applets

If only for historical reasons, an introduction to Java must cover browser-based Java clients using
applets. An applet is a Java program which runs in the Java virtual machine contained in a web browser.
One problem with applets is that their evolution basically stopped at java 1.1.8 as the last supported by
Microsoft’s Internet Explorer out of the box (that is, without downloading a plugin). Therefore, we do
not have the much improved libraries of the Java2 platform at our disposal, such as the new collections
and the Swing user interface.

19.4. Discussion

Java is a compromise. It is result of the frustration with C++ and can be seen as a great simplification of
this highly complex, multi-paradigm language. It is much harder to write a desastrous program (crashing
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a system) in Java than in C or C++.

Java checked exceptions are appealing at first sight, but soon turn out to lead to meaningless code
mapping the checked exception of one API to the checked exception of another API, often accompanied
by cascading stack traces in the resulting log files. Not surprisingly, the C# designers dropped this
features.

Although the core language is relatively simple (probably with the exception of inner classes), some of
the APIs are not, which may indicate that certain functionality is not easy to express in such a restricted
language. It is interesting to observe, how Java is evolving. Partly driven by the evolution of C#, version
1.5 will introduce features such as generic types which were originally deemed too complex.

Considering, Java was designed as a new language from scratch, is not famous for the consistency of its
API. As an example, the length of something is expressed in (at least) three different ways:

int n = "blah".length();
n = (new int[10]).length;
n = (new ArrayList()).size();

The naming of classes and methods, however, is in general readable, since it avoids abbreviations.
Unfortunately, the naming standard does not define how acronyms are written as part of identifiers. Are
they all caps or just the first letter? The standard library demonstrates that people were still debating even
when writing a single class (e.g., HttpURLConnection).

References

If you would like to feel the original spirit of the Java "movement", have a look intoHoff96>. To learn
Java, especially with a C/C++ background, the Nutshell bookFlanagan02> is still the best in my opinion.
If you want to get a deeper understanding of how to write good Java programs (and you have more time
since you are facing 1400 pages),Eckel02> is for you. This book is particularly interesting if viewed in
the context of Bruce Eckel’s C++ book and his more recent move towards Python.

[Hoff96] Arthur van Hoff, Sami Shaio, and Orca Starbuck, 0-201-48837-X, Addison-Wesley, 1996,
Hooked on Java: Creating hot Web sites with Java applets.
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Notes
1. Theequals method does not really belong to any of the two objects involved. The underlying

equality test is a symmetric operation and should be implemented depending on both objects. It is
therefore a good example for a situation where a generic function makes more sense. In the Java
equals implementations one will instead always find a cast operator (if not an explicit type check).
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I was debating whether to include JavaScript in this book or not when I had to use JavaScript on an
HTML form to enable or disable fields depending on the value of another field. Doing so on a simple
web page is straightforward, but I was pleasantly surprised that the dynamic object-oriented features of
JavaScript allowed me to implement this functionality in a generic way as part of an XML/XSL based
web application framework. The second reason I decided to cover JavaScript is the excellent reference
card (http://www.javascript-reference.info) I stumbled upon while solving this problem. This card shows
JavaScript as a small yet powerful language.

The main difference between JavaScript and the other languages in this book it its original as a scripting
language for internet browsers. JavaScript (originally called "LiveScript") was created by Netscape in
1995 to allow web designers to use the newly introduced Java applets without coding Java. Although the
name stresses the relationship to Java, JavaScript is a completely different language, much closer to
scripting languages such as Perl and (apart from the curly braces) Python. Rather than controlling
applets, it turned out to be very useful to access and manipulate the parts of HTML pages (by means of
the underlying document object model, DOM).

Microsoft first tried to position Visual Basic as an alternative browser scripting language in the form of
VBScript and then added its own JavaScript implementation called JScript to the Internet Explorer in
1996. Because the differences of these implementations, a standardization process was started with
ECMA which lead to the first ECMAScript standard in 1997.

We will treat JavaScript in this chapter as an independent programming language without the context of a
web browser.

20.1. Software and Installation

We use Netscape’s JavaScript implementation in Java, called Rhino (http://www.mozilla.org/rhino). At
the time of this writing, version 1.5 release 4.1 is the most current stable release. It implements edition 3
of the ECMA standard. The implementation includes also an interpreter with an interactive shell that we
can use for our experiments. The shell is started with the command

java -classpath js.jar org.mozilla.javascript.tools.shell.Main

The Java archivejs.jar contains the JavaScript implementation including the
org.mozilla.javascript.tools.shell.Main class which contains the interactive shell. When
running the command, the intepreter greets you with a short message.

Rhino 1.5 release 4.1 2003 04 21
js>
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20.2. Quick Tour

20.2.1. Expressions

If it takes more than one line to print "Hello World", JavaScript should not call itself a scripting language.
In fact, it is the shortest "Hello World" program in this book (tied with Lisp, Ruby, Haskell, and Python):

js> "Hello World"
Hello World

Of course, we are cheating, since we just use the shell to repeat the string value (so we did for the other
languages). The real "Hello World" program looks like this:

js> print(’Hello World’)
Hello World

This starts revealing some information about JavaScript. We can call functions (print being one of
them) using the "standard" (mathematical) function notation, and strings literals can be defined with
single quotes or double quotes (as in the first example).

Theprint function can take any number of arguments, and these arguments can be of any type.

js> print(’result:’, 4+5*3)
result: 19

This also shows us that we can perform arithmetic, again using the standard (i.e., mathematical) syntax.
As in Python, the printed values are separated by spaces.

JavaScript follows Java’s expression syntax including update operators (+=, -= , and so forth), increment
and decrement operators, as well as bit-wise operations (e.g.,& for bit-wise "and" and<< for "shift left".

Like in Java, numbers can be entered as integer, floating point (with or without exponent), hexadecimal
(starting with0x ), or octal (starting with0) literals.

js> 1.5e-2
0.015
js> 0x9d
157
js> 011
9

JavaScript knows only one number type (simply called "number") that is stored as a 64-bit floating point
number (C’s "double" type). Therefore, division does not distinguish between integers and real numbers,
and the result of3/2 is 1.5 and not1.
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js> typeof(55)
number
js> typeof(5.5)
number
js> 3 / 2
1.5
js> 5 % 2
1
js> 5.5 % 2
1.5
js> 5.5 % 2.5
0.5

Boolean expressions also use Java’s syntax with the constantstrue andfalse and the C operators! ,
&&, and|| for the three Boolean operations "not", "and", and "or". But in contrast to strongly typed
languages such as Java, they can be applied to any expression. A value is considered false if it is the
boolean constantfalse , an empty string, a numerical zero, or a null reference. Everything else
(including empty lists) is considered true.

Semantically, the boolean "and" and "or" operators work as shortcut operators returning one of their
operands (like in Python). The result of an "and" expression is the first operand that is false or, if all
operands are true, the last that is true. Similarly, the result of an "or" expression is the first operand that is
true or, if all operands are false, the last that is false.

js> "a" && "b"
b
js> 0 && "b"
0
js> "" || 0
0

This way, we can also simulate a functional "if-then-else" expression, but we do not have to resort to this
trick, since JavaScript also support question mark operator.

js> 4 < 5 && "b" || "c"
b
js> 4 > 5 && "b" || "c"
c
js> 4 < 5 ? "b" : "c"
b
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20.2.2. Control Statements

JavaScript offers Java’s conditional and loop statements.

js> i = 3;
3
js> while (i > 0) { print(i); i -= 1; }
3
2
1
0
js> do {

print(i);
i += 1;

} while (i < 4)
0
1
2
3
4
js> for (i=0; i<3; i++) {

print(i);
}
0
1
2
js> if (i < 3) {

print("less than three");
} else if (i > 3) {

print("greater than three");
} else {

print("exactly three");
}
exactly three

We can also use abreak statement to escape from the innermost loop or switch clause.

JavaScript’sswitch statement supports numbers and strings (like C#).

20.2.3. Collections

Let’s see if we can detect more similarities to Python. Defining lists looks exactly the same.

js> x = [1, 2, "blah"]
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1,2,blah
js> x[0]
1
js> x[2]
blah
js> x.slice(1,2)
2
js> x.slice(0,2)
1,2

As we see, list literals and access to elements use the same syntax as Python, and as in any other
language with some C heritage, indexing starts at zero (think pointers and offsets). JavaScript also allows
us to extracts parts of a list using slices with theslice method. This is the first time we see a method
call in JavaScript, and again, there is no surprise. Note that the slice indexes describe half-open intervals,
that is, the left boundary is included and the right one is not.

As for maps, the main difference is that they are printed as objects rather than showing the keys and
values (we will see shortly why).

js> m = {"blah": 55, "blub": 66}
[object Object]
js> m["blah"]
55
js> m["xxx"]
js>

We also notice that a missing key does not raise an exception, but just returns nothing (which is called
null in JavaScript).

20.2.4. Functions

JavaScript treats functions as first class objects, almost like a functional language. One way to define a
function is to create an anonymous function and assign it to a variable. The three periods in the following
examples denote the repeated function definition as printed by the interactive shell.

js> add = function(x, y) { return x + y; }
...
js> add(1, 2)
3

The anonymous function is defined with thefunction keyword followed by the argument list and the
code block defining the function’s body. Since JavaScript is dynamically typed, there is no need to define
the argument and return types. To return a value, we call thereturn operator followed by the expression
we want to return (no implicit return like in functional languages).
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You can also use the more conventional syntax with the function’s name following thefunction

keyword.

js> function add(x, y) { return x + y; }
js> add(1,2)
3

The result is exactly the same. The second syntax is just a shortcut for the first one (saving as much as a
single character, the assignment operator=).

Having defined a function using anonymous function objects and assignment, it is clear that we easily
pass functions as arguments to other functions. In the following example, we define the functiontimes

that calls a call function a given number of times.

js> function times(n, f) {
for (i=0; i<n; ++i) {

f()
}

}
...
js> times(5, function() { print("blah") })
blah
blah
blah
blah
blah

We can use the same mechanism to define higher order functions which return functions themselves,
such as the composition of functions.

js> function compose(f, g) {
return function(x) { return f(g(x)) }

}
js> function times2(x) { return 2*x }
js> function plus10(x) { return x + 10; }
js> compose(times2, plus10)(10)
40

Thecompose function defined above works only for single arguments. For the general case we need to
apply a function to an argument list without knowning the actual number of arguments in advance. As a
first observation, we can call a JavaScript function with more than the required number of arguments. We
can, for example, pass three instead of two arguments to theadd function defined above.

js> add(1, 2, 3)
3
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The third argument is simply ignored. In the body of a function we have access to array of arguments
under the special variablearguments . This allows us to generalize theadd function to arbitrarily many
arguments.

js> function sum() {
var result = 0;
for (var i=0; i<arguments.length; i++) {

result += arguments[i];
}
return result;

}
js> sum(1, 2, 3)
6

If we don’t know the number of arguments in advance, we can call a function using its apply method
which takes the object the function belongs to (more on this in the next section) as the first argument and
the array of arguments as the second.

js> sum.apply(this, [1, 2, 3, 4])
10

Putting all these pieces together, we can now define the general composition function.

js> function compose(f, g) {
return function() {

return f(g.apply(this, arguments));
}

}
js> compose(times2, sum)(1, 2, 3, 4)
20

Here,this is another implicit variable pointing to the object for which the function was called.

There is a third way to define a function which leads us directly to the object-oriented aspects of
JavaScript. We can construct a function dynamically using strings for the argument names as well as the
function’s body by passing these strings to theFunction constructor.

js> add = new Function("x", "y", "return x+y");
...
js> add(1, 2)
3

As you can imagine, this built-in code generation capability is extremely powerful (and dangerous).
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20.2.5. Objects

Most of the chapters in this book explaining the object-oriented features of a language are called
"Objects and Classes", just like object-oriented programming could by called "class-oriented" in most
languages. JavaScript is one of the few exceptions. There are no classes. Its object-oriented features are
based on prototypes rather than classes, an approach which dates back to the Self
(http://research.sun.com/self/language.html) language.

To start with, let us revisit dictionaries (maps), now viewed as objects.

js> person = { "name": "Homer" }
[object Object]
js> person.name
Homer
js> person["name"]
Homer
js> person.age = 66
66
js> person["age"]
66
js> delete person.name
true
js> person.name

In JavaScript, objects and maps are basically the same thing. You can view the direct access to an
object’s properties (such asname andage ) as syntactic sugar for the index operator. Obviously, this only
works as long as the name of the property is a proper JavaScript identifier (starting with a letter, dollar
sign, or underscore character).

js> person["1"] = 123
123
js> person["1"]
123
js> person.1
js: "<stdin>", line 52: uncaught JavaScript exception: SyntaxError: missing ; before statement (<stdin>; line 52)
js: person.1
js: .......^

Like in Python, properties can be any kind of value including functions (in Python "callable objects"). A
method or operation in other object-oriented languages corresponds to a function property in JavaScript.

js> person.hello = function() { print("Hello, I’m", this.name); }
...
js> person.hello()
Hello, I’m Homer
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We obviously do not want to set the properties for each new object again and again. In JavaScript, we
have two means to define the properties of all objects of a certain kind (I almost wrote "class"):
constructors and prototypes.

A constructor is a function that sets the properties of a new object. It is called when constructing an
object with thenew operator.

js> function Person(name) { this.name = name; }
js> person = new Person("Homer");
[object Object]
js> person.name
Homer
js> person.constructor

function Person(name) {
this.name = name;

}

We can ask an object for its constructor using theconstructor attribute. In a sense, JavaScript’s
classes are the constructor functions. This becomes even more apparent when we look at prototypes.
First, we should remark that functions are first class objects which can have properties themselves (again
just like in Python).

js> function add(x, y) { return x + y; }
js> add.description = "I’m adding two numbers"
I’m adding two numbers
js> add.description
I’m adding two numbers

When constructing an object, it is linked to its constructor function, and each constructor function has the
prototype property. When looking for a property of an object, JavaScript first checks the object itself.
If the property is defined in the object, its value is returned. If it is not defined in the object itself,
JavaScript checks the prototype of the object, that is, theprototype property of the object’s constructor
function. If the prototype object defined the requested property, its value is returned. Otherwise, the
result is null. The following example demonstrates the different situations.

js> person.age
js> Person.prototype.age = 55
55
js> person.age
55
js> person.age = 66
66
js> person.age
66
js> delete person.age
true
js> person.age
55
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We first check theperson ’s age property which turns out to be empty. We then set theage property of
the constructor’s prototype to 55. Now, theperson object still does not define theage property itself, but
JavaScript finds it in the prototype and prints 55. After setting theperson ’s age property explicitly, we
see the new property value. Finally, after deleting the property again, the prototype’s value is retrieved.

The nice thing about this prototype approach is that it treats attributes and methods exactly the same way.
All properties, whether they are normal values (attributes) or functions (method), follow the same lookup
rules.

Static or class methods of other object-oriented languages become function properties of JavaScript’s
constructors.

js> function Person(name, age) { this.name = name; this.age = age; }
js> Person.compareAge = function(a, b) { return a.age - b.age; }
...
js> homer = new Person("Homer", 55);
[object Object]
js> bart = new Person("Bart", 11);
[object Object]
js> Person.compareAge(homer, bart)
44

20.3. More Features

20.3.1. Exceptions

20.3.2. Regular Expressions

JavaScript, being a true scripting language, contains a powerful regular expression library. This is not
surprising since JavaScript is often used to validate HTML forms.

Bibliography
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Ruby is a relatively new scripting language designed by Yukuhiro Matsumoto as an alternative to Perl
and Python ("more powerful than Perl, more object-oriented than Python" according the inventor). It was
first released in 1995 and quickly gained popularity in Japan. Outside of Japan, the interest in Ruby was
mainly sparked by "pragmatic programmers" (see[HUNT00]>), Andrew Hunt and David Thomas, with
their book about Ruby[THOMAS00]>. Ruby combines aspects of such different origins as Perl and
Smalltalk. It is considered by many the cleanest scripting language.

21.1. Software and Installation

Since there is only one Ruby implementation (the original one by the inventor) available for now, we
don’t have to choose between different dialects. We use the standard Windows distribution (which comes
with an installer) as well as the Linux version. Part of the installation is an interactive shell calledirb

(for interactive Ruby) which is similar to the interactive environments we have used for Python, Lisp,
and so forth. On Debian Linux, the interactive shell is contained in a second package (calledirb ) that
you have to install together with the Ruby package itself.

Using the option--simple-prompt changes the prompt of the interactive shell to>> which is more
suitable for our presentation than the longwinded standard prompt indicating module and line number.
Like in Perl, we can manipulate the way the print statement separates fields and records using the special
variables$, and$\ . We will set the record separator to a space to simplify the examples.

21.2. Quick Tour

21.2.1. Expression

We start our journey at the usual place.

>> "Hello World"
=> "Hello World"
>> puts "Hello World\n"
Hello World
=> nil
>> 4 + 5 * 6
=> 34

The first impression is typical for a "scripting" language: no surprise. As an interesting detail we notice
that the interactive shell always prints the value of the statement after the arrow "=>". Even the print
statement returns something (albeit nil). This is a first indication that Ruby treats everything as

284



Chapter 21. Ruby

expressions (like a functional language). This impression is quickly confirmed trying the "if" statement
(or rather expression), something we lamented about when using Python.

>> if 1 < 2 then 5 else 6 end
=> 5

Even better, the same is possible with a case statement.

>> case 30
when 0..10 then "apple"
when 11..20 then "pear"
else "banana"

end
=> "banana"

Many developers will welcome another difference from Python: indentation does not matter; Ruby uses
the "end" keyword to denote the end of a block if necessary. Concerning variables, we expect from a
scripting language that they don’t have to be declared and that they can change their type any time.

>> x = "blah"
=> "blah"
>> x = 55
=> 55

21.2.2. Collections

What about built-in collections as another typical scripting feature? Ruby’s lists feel like Python lists (or
Perl’s anonymous arrays) with Perl’s slices.

>> l = [1, 2, 3]
=> [1, 2, 3]
>> l[1]
=> 2
>> l[-1]
=> 3
>> l[1..2]
=> [2, 3]
>> l[1..-1]
=> [2, 3]

The syntax for (hash) maps corresponds to Perl’s anonymous hashes (when used in a sensible way with
the arrow notation), but the subscript operator is (fortunately) the same as for lists.

>> m = {"a" => 1, "b" => 2}
=> {"a"=>1, "b"=>2}
>> m["a"]
=> 1
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Ruby is truely object oriented. All values are first class objects (including integers, floating point
numbers, strings) and all functionality which can be attached to an object is provided as a method of the
object (and not a function as in Python in many cases). Here are a few examples using strings and lists.

>> "blah".length
=> 4
>> "blah".length()
=> 4
>> "blah".index(’l’)
=> 1
>> -1234.abs
=> 1234
>> "blah".capitalize
=> Blah
>> "BlAh.downcase
=> blah
>> [1, 2, 3].join(";")
=> 1;2;3

Like Perl, Ruby allows to omit the parentheses around function or method arguments unless required to
ensure the correct precedence. And like Perl, Ruby has to pay for this debatable convenience with a more
complex handling of function objects as we will see below.

Ruby has adopted Scheme’s convention for method suffixes. Predicates, that is, methods which return a
boolean, end with a question mark, and destructive methods, which change the associated object, end
with an exclamation mark.

>> [1, 2, 3].reverse!
=> [3, 2, 1]
>> [1, 2, 3].include?(1)
=> true
>> [1, 2, 3].include? 4
=> false
>> [].empty?
=> true
>> [1, 2, 3, 2, 1].uniq!
=> [1, 2, 3]

21.2.3. Objects and Classes

Ruby’s object oriented part combines Smalltalk and Python with a more common syntax. Here is the
Person class again.

>> class Person
>> def initialize(name, age)
>> @name = name
>> @age = age
>> end
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>> end
=> nil
>> person = Person.new("Homer", 55)
=> #<Person:0x2a42868 @age=55, @name="Homer">

Similar to Python, methods are functions inside a class. But in contrast to Python we see no explicit
reference to the instance itselfself and the initializer is simply calledinitialize . Ruby uses "funny
symbols" to mark instance, class, and global variables. The "at" sign is used for instance variables, two
"at" signs for class variables, and the dollar for global variables. In this example, we set the two instance
variablesname andage to the given values. Like in Python, attributes do not have to be declared but
string into live at the first assignment.

Our class does not do much yet. As a first step, we will override Ruby’s methodto_s which is used by
the print function to convert an object to a string. It is pleasant for our incremental presentation that we
can add features to the existingPerson class as we go.

class Person
def to_s

"Person(name=#{@name}, age=#{age})"
end

end
=> nil
>> print person
Person(name=Homer, age=55)
=> nil

Since the attribute itself uses the@prefix, there is no confusion between the attribute and a method with
the same name.

class Person
def name

@name
end

end
=> nil
>> person.name
=> "Homer"

But how to distinguish getter and setter? The setter syntax show another example of Ruby’s method
suffixes. When assigning a value to a "field" of an object, the method with the same name as the field and
the= suffix is called.

class Person
def name=(aName)

@name = aName
end

end
=> nil
>> person.name = "Bart"
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=> "Bart"
>> person.name
=> "Bart"

We don’t need to code the standard accessor methods ourselves. Ruby provides a shortcut for it.

21.3. More Features

21.3.1. Exception Handling

def doSomething(x)
if x < 10

raise "value to low"
end

end

begin
doSomething(5)

rescue
print "error: #{$!}\n"

ensure
print "make sure this is done\n"

end

# user-defined exception

class ChainedException < Exception
attr :no
attr :cause
def initialize(no, cause=nil)

@no = no
@cause = cause

end

def to_s()
return "no=#{@no}"

end
end

def raiseException()
raise ChainedException.new(123)

end

begin
raiseException()
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rescue ChainedException
print "error: #{$!}\n"

end

21.3.2. Modules and Mixins

Mixin defining the "to_s" method based on reflection.

module Display
def to_s()

s = ""
for name in instance_variables

s += "#{name[1..-1]}=#{instance_eval(name)}\n"
end
return s

end
end

# Tiny address class using the Display mixin
class Address include Display

attr_reader :street, :city, :country

def initialize(street, city, country="Germany")
@street, @city, @country = street, city, country

end
end

address = Address.new("Am Seestern 4", "Duesseldorf", "Germany")
print address, "\n"

21.3.3. Operator Overloading

21.3.4. Regular Expressions

Here is a regular expression looking for the "src" parts in HTML image tags.

# regular expression looking for the "src" parts in HTML image tags
# The ’true’ argument makes the pattern case insensitive
r = Regexp.compile(’(?:input|img).*src=(\’|")(.*)\1’, true)

s = "<input type=’image’ src=’images/some.gif’>"
m = r.match(s)
assertEquals("images/some.gif", m[2])
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# same in perl style
s =~ /(?:input|img).*src=(\’|")(.*)\1/
assertEquals("images/some.gif", m[2])

The true argument of thecompile method makes the pattern case insensitive.

21.4. Libraries and Common Examples

21.4.1. Input and Output

dir = Dir.new("dir")
entries = []
dir.each { |file| entries << file }

assertEquals([".", ".."], entries)

entries = []
Dir.foreach("dir") do |file|

if file[0..0] != "."
entries << file

end
end
assertEquals([], entries)

21.4.2. Leftovers

#!/usr/bin/env ruby
l = []
l << "bla"

x = ""
for i in 0..5 do x += i.to_s end
assertEquals("012345", x)

x = ""
i = 0
begin

x += i.to_s
i += 1

end while i <= 5
assertEquals("012345", x)

x = ""
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i = 0
while i <= 5

x += i.to_s
i += 1

end
assertEquals("012345", x)

# Can we handle classes as objects? Yes
x = Address
a = x.new("Elfgenweg 14", "Duesseldorf")
print a, "\n"

assertEquals("Germany", a.country)

#----------------------------------------------------------------------
# blocks and iterators

s = ""
(0..5).each { |i| s += i.to_s }
assertEquals("012345", s)

s = ""
(0..5).to_a.reverse_each { |i| s += i.to_s }
assertEquals("543210", s)

assertEquals([2, 4], [1, 2].collect {|i| 2 * i})

#----------------------------------------------------------------------
# Scoping

def testScope()
# As in python, "if" statements do not define a new scope
if 1

innerX = 5
end
assertEquals(5, innerX)

# The same is true for loops
for i in [1, 2] do

innerY = 6
end
assertEquals(6, innerY)

end

testScope()

#----------------------------------------------------------------------
# Function "pointers"
#
# The function "proc" converts a block into a function (Proc) object.
# This includes the context (here the variable x).

class Button
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def initialize(label, action)
@label = label
@action = action

end

def press
@action.call()

end
end

x = "this is "
b = Button.new("bla", proc { x + "blub" })
assertEquals("this is blub", b.press)

#----------------------------------------------------------------------
#

21.5. Discussion

Ruby programs are among the most compact and readable in recent comparisons. The combination of
the object-oriented API and the functional approach to statements and expressions pays off. On the
downside is the Perl heritage. Although they might make Ruby more attractive for Perl programmers, the
features copied over from Perl don’t seem to fit Ruby’s otherwise clean design. The same is true for the
handling of function objects. Since functions can be called without parameter lists, a special syntax is
required to refer to the function itself and calling a function object. Scheme and Python demonstrate with
a consistent syntax that this complication is not necessary. You can avoid the special Perl features by the
cleaner Ruby functions, but the function handling is an annoyance in an otherwise very interesting
language.
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As everybody (who is not completely immune against any IT industry hype) knows, XSLT is the
transformation language for XML, the extensible markup language. Why do we tackle such a
transformation language in a book about general purpose programming languages? First, of course, it
adds a few million people to the potential audience for this book. More seriously, I realized when using
XSLT for larger projects that programming XSLT is quite different from the kind of (mostly
object-oriented) programming I was used to. Some things become very easy and others extremely
tedious.

XSLT ows part of its expressiveness to the powerful XML query language XPath which we will
therefore cover to some extent as well.

22.1. Software and Installation

There are many good open source libraries for XSLT available for several languages (most notably for
the C-family C, C++, Java, C#). For the examples in this chapter, you can use any of these tools. Because
of its simplicity and speed, I have used xsltproc (http://xmlsoft.org/XSLT/xsltproc2.html), the command
line interface for the fast XSLT library libxslt (http://xmlsoft.org/XSLT/) written in C. Both, the library
and the command line tool are part of every Linux distribution, but are also available as binaries for the
Win32 platform.

22.2. Quick Tour

22.2.1. Hello World

XSLT is a transformation language and as such not meant to print "Hello World". However, we can show
the required scaffolding by defining a transformation which turns any XML input into our friendly
message.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>
<xsl:template match="/">Hello World</xsl:template>

</xsl:stylesheet>

We put this transformation (or "stylesheet") into a file calledhello.xsl . To run the program, that is, to
apply this transformation, we enter any XML document into a file calledhello.xml , for example,

<?xml version="1.0"?>
<hello/>
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and run the XSLT processor with the stylesheet and the XML document as the two arguments:

> xsltproc hello.xslt hello.xml
Hello World

We have seen many "Hello World" programs by now, but this is definitely different. First, an XSLT
stylesheet is again an XML document. Similar to Lisp, this means that the same tools can be used for the
data and the programs manipulating the data. We can, for example, use XSLT to generate or modify
other XSLT stylesheets. On the downside, this also means that we have to deal with a syntax that was not
invented for programs. A good XML editor such as James Clark’s nxml
(http://www.xmlhack.com/read.php?item=2061) mode for emacs (which I’m using to write this book) or
one of the many graphical XML tools is indispensible.

After the XML preamble<?xml version="1.0"?> , the root element tells that we are defining an
XSLT stylesheet and introduces the associated namespace, which is almost always (unless you generate
another stylesheet) calledxsl ).

The body of consists of a number of global definitions followed by a list of rules. In our example, there is
exactly one of each. The output statement,<xsl:output method="text"/> , determines how the
output is formatted. The default output method isxml , since XSLT main pupose is to transform one
XML document into another. Thexml method ensures that the output is well-formed XML including
proper nesting of elements and the escaping of special characters. Since we want to generate plain text,
we use thetext method. The text method is often used in XSLT based code generators, for example, to
generate Java classes from XML schemas.

The template element defines the transformation rule. As usual, a rule consists of two parts: when to
apply the rule and what to do in case the rule is applied. In XSLT, a rule is applied to all the XML nodes
matching the XPath expression in thematch attribute of thetemplate . We will dive into XPath in the
next paragraph. Our example uses the simplest possible XPath expression/ matching the root element of
an XML document.

Now, how do we get anything to the output stream? When the XSLT processor encounters a non-XSL
element or text node in a template, the element or text is copied to the output document. In other words,
the one and only rule of our "Hello World" stylesheet, is applied to the root node of the XML document
which causes the "Hello World" message to be copied to the output stream.

22.2.2. XPath

Much of the power of XSLT derives from the ability to extract information from XML documents in a
very concise way using XPath expressions. As test data for the following examples we take a small
bibliography (as used in the docbook (http://www.docbook.org) source of this book) and store it in
biblio.xml .

<?xml version="1.0" ?>
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<bibliography id="biblio.xslt">
<title>References</title>
<biblioentry id="Eckstein01">

<authorgroup>
<author>

<firstname>Robert</firstname>
<surname>Eckstein</surname>

</author>
<author>

<firstname>Michel</firstname>
<surname>Casabianca</surname>

</author>
</authorgroup>
<isbn>0596001339</isbn>
<publisher>

<publishername>O’Reilly</publishername>
</publisher>
<pubdate>2001</pubdate>
<title>XML Pocket Reference</title>

</biblioentry>

<biblioentry id="Kay03">
<author>

<firstname>Michael</firstname>
<surname>Kay</surname>

</author>
<isbn>0764543814</isbn>
<publisher>

<publishername>John Wiley</publishername>
</publisher>
<pubdate>2003</pubdate>
<title>XSLT</title>

</biblioentry>
</bibliography>

To start with, we apply an empty stylesheet to this data.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"/>

To our surprise, the output is not empty, but contains all the text (that is, the contents of the text nodes) of
the document.

<?xml version="1.0"?>
References

Robert
Eckstein
Michel
Casabianca

0596001339
O’Reilly
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2001
XML Pocket Reference

Michael
Kay

0764543814
John Wiley

2003
XSLT

Whenever the XSLT processor encounters a node for which no template is defined in the stylesheet, it
applies a default template. For an element node, the processor applies all templates to children of the
element. The default template for text nodes copies the contents to the output. Together, this explains
why we see all the text of the XML input document when applying the empty stylesheet.

Like paths in a file system, XPath expressions denote nodes in an XML document. In the simplest case,
an XPath expression looks exactly like a (UNIX) directory path. The main difference is that a path may
refer to multiple nodes, since an XML element may contain multiple children with the same name. Here
is a stylesheet which extracts the titles from our bibliography.

22.2.3. Conditions and Loops

22.2.4. Functions

template elements are also used to define functions

22.3. More Features

22.4. Discussion
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Microsoft’s answer to Java (the language, not the run-time environment) is C# (pronounced "see sharp").
Among the languages of the C family, it stands between Java and C++. C# definitely owes a lot to Java. It
is probably easier to migrate from Java to C# than from any other programming language (including C++
and Visual Basic). In many areas C# goes beyond Java by resolving some of its problems (such as the rift
between primitive values and objects) and preserving more of C++ features.

23.1. Software and Installation

I’ve used two environments to run the C# programs: Microsoft’s .NET SDK version 1.1 and Mono
(www.go-mono.org), Ximian’s open source implementation of the .NET framework, version 0.23. In
fact, I switched from one to the other without problems when moving the book to the Linux platform.
Both compilers are available for free and are easy to install using a Windows installer or a Linux package
(Debian package in my case). Microsoft’s C# compiler is calledcsc and the Mono C# compiler ismcs.
To run the test programs, just enter the code with your favorite text editor, apply the compiler with the
file containing the C# code (e.g.,csc hello.cs and start the created executable (e.g.,hello.exe ).
There is an emacs mode (http://www.cybercom.net/~zbrad/DotNet/Emacs/)for C#.

23.2. Quick Tour

Because of the similarities to Java, we will concentrate on the differences and extensions C# has to offer.

23.2.1. Hello World

class Hello {
static void Main() {

System.Console.WriteLine("Hello World");
}

}

The C# version of our favorite program looks almost like the Java code. There are only few visible
differences. Thepublic qualifiers for the class and the method are missing (but they exist) and the
method names start (following Microsoft’s C++ convention) with a capital letter. What looks like the
direct access to the attributeConsole is in fact the call of the getter method of a property (more on this
below). Otherwise, the program works just like its Java counterpart.

Another difference is the file organization. The name of the source file is independent of the classes
contained in the file, and you can put as many classes in a file as you want.

298



Chapter 23. C#

Moving on to expressions, there are not many differences either. However, C# has more than twice as
many primitive types. First, C# (or better: the underlying .NET framework and its Common Language
Runtime, CLR) supports unsigned integer types such asuint . Second, it has a built-in decimal type
which is extremely useful for financial calculations (accountants hate rounding errors).

23.2.2. Control Statements

All the familiar control statements work in C# just like they do in the other languages of the C family.

class Control {
static int sign(int x) {

if (x < 0) {
return -1;

}
else if (x == 0) {

return 0;
}
else {

return 1;
}

}

static void Main() {
System.Console.WriteLine("sign(55)={0}", sign(55));

}
}

Just like Java, C# insists on boolean expressions for the conditions.

The standard loops also work exactly as in Java. In particular, we can can define loop variables inside the
for statement. The loop variable have to be of the same type and must not already be used in the current
scope.

class Control {
static void Main() {

int i = 0;
while (i < 3) {

System.Console.WriteLine("i={0}", i);
i++;

}

i = 0;
do {

System.Console.WriteLine("i={0}", i);
i++;
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} while (i < 3);

for (int j=0, k=1; j<3; j++, k += 2) {
System.Console.WriteLine("j={0}, k={1}", j, k);

}
}

}

Despite the similarities between Java and C#, we find some small but useful extension in almost every
area of the language. With regards to control statements, the first one is theforeach loop which
simplifies the iteration through a collection.

class Control {
static void Main() {

int[] numbers = { 1, 3, 5};
foreach (int i in numbers) {

System.Console.WriteLine("i={0}", i);
}

}
}

The little extension is so convenient that the Java language added it in version 1.5. In order not to upset
the Java community by introducing a new keyword, Java replaced the "in " (which I personally use quite
often for input streams) by a colon.

The second extension is theswitch statement. In addition to integer expression, we can also use strings
in theswitch expression.

class Control {
static void Main() {

int i = 0;
switch ("t" + "wo") {
case "one":

i = 1;
break;

case "two":
i = 2;
break;

case "three":
i = 3;
break;

}
System.Console.WriteLine("i={0}", i);

}
}

The strings in thecase clauses must be constants. This allows for an efficient implementation of the
switch expression using "interned" strings. Basically, the string constants are stored in a hash table, and
the implementation of theswitch statement evaluates the string expression and tries to find it in the
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hash table. If it is not in the table, it is not interned and therefore does not match any of thecase strings.
If the string is found in the hash table, it can be efficiently compared to thecase strings using the
address of the interned strings.

23.2.3. Classes

The following definition of our person class again shows a lot of resemblance to the Java version, but
also demonstrates the use of properties which goes beyond a naming convention as in Java.

public class Person {
string name;
int age;

public Person(string name, int age) {
this.name = name;
this.age = age;

}

public string Name {
get { return this.name; }

}

public int Age {
get { return this.age; }
set {

System.Console.WriteLine("setting age to {0}", value);
this.age = value;

}
}

}

The class defines two properties, a read-only property for the name and a read-write property for the age
of the person. By omitting all the signatures, C# keeps the syntax short and consistent. The argument
passed to the setter is implicitly available as thevalue . We can now use the property just like an
attribute, but behind the scenes the getter and setter methods will be called.

class Test {
static void Main() {

Person person = new Person("Homer", 55);
person.Age = 66;
System.Console.WriteLine("name={0}, age={1}", person.Name, person.Age);

}
}

result:
setting age to 66
name=Homer, age=66
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With regards to inheritance, C# follows the C++ model more closely than Java. Methods, for example, do
not use dynamic dispatching by default. Instead, you have to declare a method asvirtual in the base
class.

public class Person {
string name;
int age;

public Person(string name, int age) {
this.name = name;
this.age = age;

}

public virtual string Hello() {
return "Hello, I am " + this.name;

}
}

In the derived class, we have to tell the compiler explicitly that we are about to override a virtual method.

public class Employee : Person {
private int number;

public Employee(string name, int age, int number) : base(name, age) {
this.number = number;

}

public override string Hello() {
return "Hello, I am number " + this.number;

}
}

Also notice the C++ syntax with respect to the base class. Calling the constructor of the base class looks
similar to C++ but with the name of the parent class replaced bybase . At least the syntax is clearer than
Java’s call to super which looks like a normal method call, but has to be the first statement in a
constructor. We can also call another constructor of the same class usingthis instead ofbase

public class Person {
string name;
int age;

public Person(string name, int age) {
this.name = name;
this.age = age;

}

public Person(string name) : this(name, 0) {}
...

}
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From a client perspective, the code looks the same in Java and C#.

class Test {
static void Main() {

Person person = new Employee("Homer", 55, 1234);
System.Console.WriteLine(person.Hello());

}
}

result:
Hello, I am number 1234

23.2.4. Collections

Like Java and in contrast to C++ and Eiffel, the first version of the .NET framework (and therefore C#)
does not support generic classes. Hence, C#’s collection classes are similar to Java and the dynamically
typed languages (e.g., Smalltalk). Here is an example demonstrating the basic usage of lists and iterators
(called enumerators in C#).

using System;
using System.Collections;

public class ListTest {
public static void Main() {

IList list = new ArrayList();
list.Add("blah");
list.Add("blub");

Console.WriteLine("list contains ’blah’? " + list.Contains("blah"));

for (IEnumerator i=list.GetEnumerator(); i.MoveNext(); ) {
string item = (string)i.Current;
Console.WriteLine("item=" + item);

}

foreach (string item in list) {
Console.WriteLine("item=" + item);

}
}

}

The enumerator semantics also look like a compromise between Java and C++ iterators. An enumerator
starts in front of its first element. Each call toMoveNext moves it forward to the next element or returns
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false if there is not element left. TheCurrent property gives us access to the current element. There is
also aReset method which put the enumerator back to its initial position in front of the first element.

Note that we do not need to case when using theforeach loop. In interesting twist is added when
storing value types in a collection. The collections always contain reference types, but the automatic
boxing and simple unboxing make the difference almost invisible.

using System;
using System.Collections;

public class ListTest {
public static void Main() {

IList list = new ArrayList();
list.Add(55);
list.Add(66);

Console.WriteLine("list contains 55? " + list.Contains(55));

for (IEnumerator i=list.GetEnumerator(); i.MoveNext(); ) {
int item = (int)i.Current;
Console.WriteLine("item=" + item);

}

foreach (int item in list) {
Console.WriteLine("item=" + item);

}
}

}

Besides lists, C# supports the whole range of collections such as dictionaries, sets, stacks, and so forth.
Here is an example using the hash table implementation of a dictionary.

using System;
using System.Collections;

public class DictionaryTest {
public static void Main() {

IDictionary map = new Hashtable();
map["blah"] = 55;
map["blub"] = 66;

foreach (string key in map.Keys) {
Console.WriteLine("map[" + key + "]=" + map[key]);

}
for (IDictionaryEnumerator i=map.GetEnumerator(); i.MoveNext(); ) {

Console.WriteLine("map[" + i.Key + "]=" + i.Value);
}

}
}
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A dictionary gives us access to its keys and values as collections which can be used conveniently in a
foreach . With the dictionary enumerator it is also possible to iterate through keys and values at the
same time.

23.3. More Features

23.3.1. Delegates and Events

Java’s inner classes (in particular anonymous ones) took me a while to understand when they were
introduced with JDK 1.1 as part of the new event handling. Being spoiled by Python’s "method objects",
they seem like a rather complex way to handle callback functions. C#’s solution resembles Eiffel’s
agents, but with more syntax support.

class Test {
public delegate double DoubleFunction(double x);

static void Evaluate(DoubleFunction f, double x) {
System.Console.WriteLine("f(" + x + ")=" + f(x));

}

static double Times2(double x) { return 2*x; }

static void Main() {
Evaluate(new DoubleFunction(Times2), 5.5);

}
}

A delegate is a function type. In the example, we define the typeDoubleFunction for functions with
a single double argument and returning a double. We can now use this new type just like any other type
to declare variables and method arguments as we have done in theEvaluate method. Calling a delegate
looks just like a function call. There is no automatic transformation from a method to a delegate. Instead,
we create the delegate (or function object) by passing the name of the method to the constructor of the
delegate.

The previous example used static methods only, but we can do the same with instance methods.

class Test {
public delegate double DoubleFunction(double x);

static void Main() {
LinearFunction f = new LinearFunction(2, 3);
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Evaluate(new DoubleFunction(f.Compute), 5.5);
}

static void Evaluate(DoubleFunction f, double x) {
System.Console.WriteLine("f(" + x + ")=" + f(x));

}
}

class LinearFunction {
private double a, b;

public LinearFunction(double a, double b) {
this.a = a;
this.b = b;

}

public double Compute(double x) {
return a*x + b;

}
}

result:
f(5.5)=14

Here, we define a classLinearFunction modeling scalar linear functions of the formf(x)=a*x+b . In
the main program, we first construct a specific instance of a linear function and then pass itsCompute

method wrapped into theDoubleFunction delegate to the evaluation method.

For now, delegates look just like function objects, but C# goes a little further and allows us to add and
subtract delegates. What are these operations supposed to mean for functions?

class Test {
public delegate int Printer(string message);

static void Main() {
Printer print1 = new Printer(Print1);
Printer print2 = new Printer(Print2);
Printer printer = print1 + print2;
int result = printer("Hello World");
System.Console.WriteLine("result=" + result);

printer -= print1;
result = printer("Hello World");
System.Console.WriteLine("result=" + result);

}

static int Print1(string message) {
System.Console.WriteLine("Print1: " + message);
return 1;

}
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static int Print2(string message) {
System.Console.WriteLine("Print2: " + message);
return 2;

}
}

result:

Print1: Hello World
Print2: Hello World
result=2
Print2: Hello World
result=2

When we add two delegates, and call the result, the two functions are executed one after the other. The
return value of the combined delegate is the return value of the last function executed. Similarly, we can
subtract a delegate from the sum and end up with the remaining one.

The main application of function objects in Windows programs are callbacks for graphical user
interfaces. Their design often follows the observer (publish-subscribe) pattern. Hence, the "delegate
arithmetic" is interpreted as adding or removing a function from a list of callbacks.

You may wonder at this point (like I did) what happens if we try and subtract the other delegate as well.
The subtracting itself is carried out without any complaint, but calling the result causes a null reference
exception.

C# gives the observer pattern its place in the syntax with the introduction ofevents. Besides attributes
and methods, events are the third kind of member a class may have. An event wraps a delegate and
presents it differently to the class itself and the outside world. From the outside, we can only add and
remove callbacks with the+= and-= operators. Inside of the class containing the event, we can "fire" the
event by calling it just like a delegate.

class Test {
public delegate int Printer(string message);
public event Printer OnPrint;

static void Main() {
new Test().run();

}

public void run() {
Printer print1 = new Printer(Print1);
Printer print2 = new Printer(Print2);

OnPrint += print1;
OnPrint += print2;
System.Console.WriteLine("result=" + OnPrint("Hello World"));

OnPrint -= print2;
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System.Console.WriteLine("result=" + OnPrint("Hello World"));

OnPrint -= print1;
if (OnPrint == null) {

System.Console.WriteLine("empty callback list");
}

}
...

}

result:

Print1: Hello World
Print2: Hello World
result=2
Print1: Hello World
result=1
empty callback list

The event is declared in the class like a delegate attribute, but with the keywordevent as an additional
modifier. Unfortunately, we can not call an event if it has no subscribers. Doing so will result again in a
null reference exception. However, we can prevent this situation, since an empty event evaluates to null.

23.3.2. Operator Overloading

As we have noticed already, C# keeps a lot more of the C++ features than Java. One more example is
operator overloading. The underlying principle is that we should be able to define our own types which
look and work the same way as the built-in types such as integers and strings. To this end, we need to
define the meaning of operators for our own types.

public class Point {
private double x, y;

public Point(double x, double y) {
this.x = x;
this.y = y;

}

public static Point operator+(Point a, Point b) {
return new Point(a.x + b.x, a.y + b.y);

}

public override string ToString() {
return "(" + this.x + ", " + this.y + ")";

}
}
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public class Test {
static void Main() {

Point a = new Point(1.5, 2.5), b = new Point(2.5, 3.5);
Point c = a + b;
System.Console.WriteLine("c=" + c);

}
}

23.3.3. Casting References

In a strongly typed object-oriented language (especially without generics), we are often forced to cast a
reference. And although not proper OO-style, we also encounter situations where we need to check the
type of an object and, if it is the expected type, cast the reference so that we can handle the special type.
C# offers the two convenient operatorsis andas for this reason.

class Hello {
static void Main() {

object o = "hello";

if (o is string) {
System.Console.WriteLine("this is a string");

}

string s = o as string;

if (s == null) {
System.Console.WriteLine("not a string");

}
else {

System.Console.WriteLine("s={0}", s);
}

}
}

this is a string
s=hello

The is operator is the crisp version of Java’sinstanceof .Theas operator combines the type check
with the casting (thus saving one type check). If the reference is of the expected type, it is cast to this
type. Otherwise theas operator return a null reference.

23.3.4. Enumerated Types

Enumerated types are another example of a C/C++ feature which Java dropped to keep the language
simple. C# follows Ada in supporting enumerated types as first class types. An enumerated type is

309



Chapter 23. C#

defined like in C, but the values are not just integers in disguise, but objects which allow us to get the
numeric value as well as the string representation.

using System;
class Hello {

enum Color {
Red, Green, Blue

}
static void Main() {

foreach (Color color in Enum.GetValues(typeof(Color))) {
Console.WriteLine("color: {0} {1}", (int)color, color.ToString());

}

Color c = (Color)Enum.Parse(typeof(Color), "Green");
Console.WriteLine("c: {0}", c.ToString());

}
}

color: 0 Red
color: 1 Green
color: 2 Blue
c: Green

The loop walks through all the values of out enumerated type, which we obtain by applying the static
GetValues method to theColor type. The print statement shows the conversion of the color value to an
integer and a string. The last two lines demonstrate the opposite direction convertion a string to aColor

value using theParse method.

By adding theFlags attribute we can change the semantics of theToString andParse methods so
that the enumerated type behaves like a bit set.

using System;
class Hello {

[Flags]
enum Permission {

Read = 0x1, Write = 0x2, Execute = 0x4
}
static void Main() {

Console.WriteLine(
"permissions: {0}", Permission.Read | Permission.Execute);

Permission p = (Permission)Enum.Parse(typeof(Permission), "Read, Write");
Console.WriteLine("p: {0}", p.ToString());

}
}

permissions: Read, Execute
p: Read, Write
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The .NET framework library contains many examples for this kind of enumeration (e.g.,
FileAttributes ).

23.3.5. Releasing Resources

Like in any programming environment with garbage collection we can’t rely on destructors to release
resources such as file handles or network connections, since we do not know when the destructors are
called (if they are called at all). We therefore have to ensure manually that our resources are closed under
all circumstances. In Java, this leads to the idiom of a try-finally statement which works as well in C#.

using System.IO;

class Hello {
static void Main() {

StreamWriter writer = null;
try {

writer = new StreamWriter("hello.txt", false);
writer.WriteLine("Hello World");

}
finally {

if (writer != null) {
writer.Close();

}
}

}
}

Besides the required number of lines it is disturbing that we have to widen the scope of thewriter

variable only to be able to close it in thefinally block. Fortunately, C# has a special syntax (similar to
Lisp’s with-open-file ) which takes care of the closing of resources automatically just like a
destructor in C++ would do.

using System.IO;

class Hello {
static void Main() {

using (StreamWriter writer = new StreamWriter("hello.txt", false)) {
writer.WriteLine("Hello World");

}
}

}

Theusing statement creates a new scope for the variablewriter demarcated by the curly braces. When
this scope is left, whether by successfully executing the block or by throwing an exception, theDispose

method of the declared object is called. The mechanism works for all objects implementing the
IDisposable interface. All the classes representing system resources such as files, sockets, database
connections in the .NET framework library implement this interface.
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23.4. Discussion

C# definitely looks like an improved Java. Many of the improvements are useful enough for Java to adopt
them (as has been done with Java 1.5). For some of them such as properties and events would require too
many changes to the Java language giving C# the advantage of being the newer language. To me, the
most profound differences are the type model (of the CLR) supporting user-defined reference and value
types, and the attributes that open a whole new range of possibilities for defining and using meta data in
the code as opposed to the sometimes overwhelming XML configuration files in the J2EE world.

I tend to agree with Bertrand Meyer (and the Smalltalk and Java people) that dynamic dispatch should be
the default in object oriented systems. Otherwise you need to change a base class (and recompile all
classes depending on it) whenever you find out that a method needs to be virtual later in the development
process.

C#’s delegates are definitely a step forward when compared to Java’s inner classes and Eiffel’s agents,
but are still far away from the convenience of Smalltalk, Python, or the functional languages.

312



Chapter 24. Thoughts

No, this chapter does not announce the winner of the programming language competition. I’m not even
attempting to compare the languages side by side. You will have noticed anyway which languages I find
more interesting. This chapter just captures some thoughts that came to my mind when collecting the
information about the programming languages describes in this book.

24.1. Paradigm

How much should a programming language guide a developer’s thinking? Some of the languages clearly
favor a specific paradigm, for example, Eiffel object-orientation and Haskell functional programming.
Others are more open, most notable Lisp which has been able to swallow all the paradigms of the last 40
years (functional, procedural, object-oriented, meta-programming).

In my opinion, we are currently observing a convergence of the major approaches to programming.
There is definitely a renaissance of functional programming after the object-oriented era.
Object-orientation as a means to control state (and side effects) is good, but avoiding side effects
wherever possible is better. I guess it is fair to say, that the C family is adding more and more features
from the functional world. Just think about variable declarations anywhere in the code (almost a let
expression), C#’s delegates and Java’s inner classes (almost first class function objects and closures).

The modern scripting languages, Python and Ruby, are going into the same direction. Python’s list
comprehensions (adopted from Haskell), nested scopes, and iterators render a number of procedural
constructs obsolete. Ruby started with a more functional approach (everything is an expression) from the
very beginning. Python is still ahead in terms of "callable objects".

24.2. Typing

One of the big debates concerning programming languages is strong (static, compile-time) versus weak
(dynamic, run-time) typing. Much of the success of the so-called scripting languages is due to dynamic
typing adopted by Perl, Python, Ruby, and the like. Code size, readability, speed of development, learning
curve are all definite advantages of this approach. The drawbacks of dynamic typing are mainly in the
areas of run-time speed, robustness (run-time type errors), and well-defined interfaces (components).

Most statically typed languages are explicitly typed in the sense that the developer has to tell the
compiler which types to use. One of the difficulties is the handling of container types such as collections.
If an explicitly typed language does not want to give up the main benefits (speed, rubustness,
strongly-typed interfaces) of strong typing for container types, it has to offer parametrized types. That’s
why Java and C# had to eventually add generics (with Java not gaining the performance benefits, since
its virtual machine does not support the generic types). Obviously, this complicates the languages
significantly with C++ being the "best" example.
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ML and Haskell offer a different solution: implicit typing using type inference. Here, the developer
provides only the type information that can not be derived from the context. The compiler always
chooses the most general type applicable. In a way, ML and Haskell make templates (generic types) the
default, but without any of the hazzle required in an explicitly typed language such as C++.

It looks like the difference between strong and weak typing is getting more and more blurred. A good
Lisp compiler is able to generate code that is almost as fast as C. Obviously, the ML and Haskell dialects
also produce executables that are as fast as their explicitly typed counterparts. It is possible that type
inference will enter the mainstream just like automatic memory management (with garbage collection)
has become a standard feature of modern programming languages.

24.3. Syntax

The syntax of programming languages mainly seems to be a matter of taste and habit. Lisp’s minimal
syntax with the equivalence between code and data still provides unmatched extensibility (just compare
meta programming in C++ and Lisp), but suffers from readibility. Learning the basic syntax is simple,
but keeping the thousands of forms in mind (without supporting syntax) is hard.

Using whitespace as part of the syntax (Python, Haskell), seems to cause too much of a (useless) debate.
Personally, I think that Eiffel (apart from the bang-bang syntax for instantiation) has the most readible
syntax of the "conventional" languages.

A simple means to avoid repetitive definitions of function is a flexible handling of arguments. In respect,
Python stands out with its support of default arguments, named arguments, variable arguments lists and
arbitrary keyword arguments. Combined with the (relatively new) syntax to apply a function to an
argument list and keyword argument map, there is not room for improvement left. Among the other
languages, Lisp probably comes closest. It is surprising to me, that Java and C# did not keep C++’s
default arguments (VB.NET does support default arguments).
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